
Teach Yourself Scheme in Fixnum Days

c© Dorai Sitaram, 1998–2001
All Rights Reserved
ds26 at gte.com

Contents

Preface, 3

1 Enter Scheme, 4

2 Data types, 6
2.1 Simple data types, 7

2.1.1 Booleans, 7
2.1.2 Numbers, 7
2.1.3 Characters, 8
2.1.4 Symbols, 9

2.2 Compound data types, 10
2.2.1 Strings, 10
2.2.2 Vectors, 11
2.2.3 Dotted pairs and lists, 11
2.2.4 Conversions between data types, 13

2.3 Other data types, 14
2.4 S-expressions, 15

3 Forms, 15
3.1 Procedures, 16

3.1.1 Procedure parameters, 17
3.1.2 Variable number of arguments, 17

3.2 apply, 17
3.3 Sequencing, 17

4 Conditionals, 18
4.1 when and unless, 19
4.2 cond, 20
4.3 case, 20
4.4 and and or, 20

5 Lexical variables, 21
5.1 let and let*, 23
5.2 fluid-let, 24

6 Recursion, 25
6.1 letrec, 26
6.2 Named let, 27
6.3 Iteration, 27
6.4 Mapping a procedure across a list, 28

7 I/O, 28
7.1 Reading, 29
7.2 Writing, 29
7.3 File ports, 29

7.3.1 Automatic opening and closing of file ports, 30
7.4 String ports, 30
7.5 Loading files, 31

1

8 Macros, 31
8.1 Specifying the expansion as a template, 33
8.2 Avoiding variable capture inside macros, 34
8.3 fluid-let, 35

9 Structures, 36
9.1 Default initializations, 38
9.2 defstruct defined, 38

10 Alists and tables, 39

11 System interface, 41
11.1 Checking for and deleting files, 42
11.2 Calling operating-system commands, 42
11.3 Environment variables, 43

12 Objects and classes, 43
12.1 A simple object system, 44
12.2 Classes are instances too, 48
12.3 Multiple inheritance, 49

13 Jumps, 50
13.1 call-with-current-continuation, 51
13.2 Escaping continuations, 52
13.3 Tree matching, 53
13.4 Coroutines, 54

13.4.1 Tree-matching with coroutines, 55

14 Nondeterminism, 56
14.1 Description of amb, 57
14.2 Implementing amb in Scheme, 58
14.3 Using amb in Scheme, 59
14.4 Logic puzzles, 60

14.4.1 The Kalotan puzzle, 61
14.4.2 Map coloring, 62

15 Engines, 64
15.1 The clock, 65
15.2 Flat engines, 66
15.3 Nestable engines, 67

16 Shell scripts, 69
16.1 Hello, World!, again, 70
16.2 Scripts with arguments, 71
16.3 Example, 72

17 CGI scripts, 73
17.1 Example: Displaying environment variables, 74
17.2 Example: Displaying selected environment variable, 76
17.3 CGI script utilities, 78
17.4 A calculator via CGI, 81

A Scheme dialects, 83
A.1 Invocation, 84
A.2 Init files, 84
A.3 Shell scripts, 85
A.4 define-macro, 85
A.5 load-relative, 85

B DOS batch files in Scheme, 86

2

C Numerical techniques, 88
C.1 Simpson’s rule, 89
C.2 Adaptive interval sizes, 91
C.3 Improper integrals, 93

D A clock for infinity, 94

E References, 97

F Index, 99

3

Preface

This is an introduction to the Scheme programming language. It is intended as a
quick-start guide, something a novice can use to get a non-trivial working knowledge
of the language, before moving on to more comprehensive and in-depth texts.

The text describes an approach to writing a crisp and utilitarian Scheme. Al-
though we will not cover Scheme from abs to zero?, we will not shy away from
those aspects of the language that are difficult, messy, nonstandard, or unusual,
but nevertheless useful and usable. Such aspects include call-with-current-
continuation, system interface, and dialect diversity. Our discussions will be
informed by our focus on problem-solving, not by a quest for metalinguistic in-
sight. I have therefore left out many of the staples of traditional Scheme tutorials.
There will be no in-depth pedagogy; no dwelling on the semantic appeal of Scheme;
no metacircular interpreters; no discussion of the underlying implementation; and
no evangelizing about Scheme’s virtues. This is not to suggest that these things
are unimportant. However, they are arguably not immediately relevant to someone
seeking a quick introduction.

How quick though? I do not know if one can teach oneself Scheme in 21
days1, although I have heard it said that the rudiments of Scheme should be a
matter of an afternoon’s study. The Scheme standard [22] itself, for all its exacting
comprehensiveness, is a mere fifty pages long. It may well be that the insight, when
it comes, will arrive in its entirety in one afternoon, though there is no telling how
many afternoons of mistries must precede it. Until that zen moment, here is my
gentle introduction.

Acknowledgment. I thank Matthias Felleisen for introducing me to Scheme and
higher-order programming; and Matthew Flatt for creating the robust and pleasant
MzScheme implementation used throughout this book.

—d

1 A fixnum is a machine’s idea of a “small” integer. Every machine has its own
idea of how big a fixnum can be.

4

Chapter 1

Enter Scheme

The canonical first program is the one that says "Hello, World!" on the console.
Using your favorite editor, create a file called hello.scm with the following contents:

;The first program

(begin
(display "Hello, World!")
(newline))

The first line is a comment. When Scheme sees a semicolon, it ignores it and all
the following text on the line.

The begin-form is Scheme’s way of introducing a sequence of subforms. In
this case there are two subforms. The first is a call to the display procedure that
outputs its argument (the string "Hello, World!") to the console (or “standard
output”). It is followed by a newline procedure call, which outputs a carriage
return.

To run this program, first start your Scheme. This is usually done by typing
the name of your Scheme executable at the operating-system command line. Eg, in
the case of MzScheme [9], you type

mzscheme

at the operating-system prompt.
This invokes the Scheme listener, which reads your input, evaluates it, prints

the result (if any), and then waits for more input from you. For this reason, it is
often called the read-eval-print loop. Note that this is not much different from your
operating-system command line, which also reads your commands, executes them,
and then waits for more. Like the operating system, the Scheme listener has its
own prompt — usually this is >, but could be something else.

At the listener prompt, load the file hello.scm. This is done by typing

(load "hello.scm")

Scheme will now execute the contents of hello.scm, outputting Hello, World!
followed by a carriage return. After this, you will get the listener prompt again,
waiting for more input from you.

Since you have such an eager listener, you need not always write your programs
in a file and load them. Sometimes, it is easier, especially when you are in an
exploring mood, to simply type expressions directly at the listener prompt and see
what happens. For example, typing the form

(begin (display "Hello, World!")
(newline))

at the Scheme prompt produces

Hello, World!

5

Actually, you could simply have typed the form "Hello, World!" at the lis-
tener, and you would have obtained as result the string

"Hello, World!"

because that is the result of the listener evaluating "Hello, World!".
Other than the fact that the second approach produces a result with double-

quotes around it, there is one other significant difference between the last two pro-
grams. The first (ie, the one with the begin) does not evaluate to anything — the
Hello, World! it emits is a side-effect produced by the display and newline pro-
cedures writing to the standard output. In the second program, the form "Hello,
World!" evaluates to the result, which in this case is the same string as the form.

Henceforth, we will use the notation ⇒ to denote evaluation. Thus

E ⇒ v

indicates that the form E evaluates to a result value of v. Eg,

(begin
(display "Hello, World!")
(newline))

⇒

(ie, nothing or void), although it has the side-effect of writing

Hello, World!

to the standard output. On the other hand,

"Hello, World!"
⇒ "Hello, World!"

In either case, we are still at the listener. To exit, type

(exit)

and this will land you back at the operating-system command-line (which, as we’ve
seen, is also a kind of listener).

The listener is convenient for interactive testing of programs and program frag-
ments. However it is by no means necessary. You may certainly stick to the tradi-
tion of creating programs in their entirety in files, and having Scheme execute them
without any explicit “listening”. In MzScheme, for instance, you could say (at the
operating-system prompt)

mzscheme -r hello.scm

and this will produce the greeting without making you deal with the listener. After
the greeting, mzscheme will return you to the operating-system prompt. This is
almost as if you said

echo Hello, World!

You could even make hello.scm seem like an operating-system command (a
shell script or a batch file), but that will have to wait till chapter 16.

6

Chapter 2

Data types

A data type is a collection of related values. These collections need not be disjoint,
and they are often hierarchical. Scheme has a rich set of data types: some are simple
(indivisible) data types and others are compound data types made by combining
other data types.

2.1 Simple data types

The simple data types of Scheme include booleans, numbers, characters, and sym-
bols.

2.1.1 Booleans

Scheme’s booleans are #t for true and #f for false. Scheme has a predicate procedure
called boolean? that checks if its argument is boolean.

(boolean? #t) ⇒ #t
(boolean? "Hello, World!") ⇒ #f

The procedure not negates its argument, considered as a boolean.

(not #f) ⇒ #t
(not #t) ⇒ #f
(not "Hello, World!") ⇒ #f

The last expression illustrates a Scheme convenience: In a context that requires a
boolean, Scheme will treat any value that is not #f as a true value.

2.1.2 Numbers

Scheme numbers can be integers (eg, 42), rationals (22/7), reals (3.1416), or com-
plex (2+3i). An integer is a rational is a real is a complex number is a number.
Predicates exist for testing the various kinds of numberness:

(number? 42) ⇒ #t
(number? #t) ⇒ #f
(complex? 2+3i) ⇒ #t
(real? 2+3i) ⇒ #f
(real? 3.1416) ⇒ #t
(real? 22/7) ⇒ #t
(real? 42) ⇒ #t
(rational? 2+3i) ⇒ #f
(rational? 3.1416) ⇒ #t
(rational? 22/7) ⇒ #t

7

(integer? 22/7) ⇒ #f
(integer? 42) ⇒ #t

Scheme integers need not be specified in decimal (base 10) format. They can be
specified in binary by prefixing the numeral with #b. Thus #b1100 is the number
twelve. The octal prefix is #o and the hex prefix is #x. (The optional decimal prefix
is #d.)

Numbers can tested for equality using the general-purpose equality predicate
eqv?.

(eqv? 42 42) ⇒ #t
(eqv? 42 #f) ⇒ #f
(eqv? 42 42.0) ⇒ #f

However, if you know that the arguments to be compared are numbers, the special
number-equality predicate = is more apt.

(= 42 42) ⇒ #t
(= 42 #f) →ERROR!!!
(= 42 42.0) ⇒ #t

Other number comparisons allowed are <, <=, >, >=.

(< 3 2) ⇒ #f
(>= 4.5 3) ⇒ #t

Arithmetic procedures +, -, *, /, expt have the expected behavior:

(+ 1 2 3) ⇒ 6
(- 5.3 2) ⇒ 3.3
(- 5 2 1) ⇒ 2
(* 1 2 3) ⇒ 6
(/ 6 3) ⇒ 2
(/ 22 7) ⇒ 22/7
(expt 2 3) ⇒ 8
(expt 4 1/2) ⇒ 2.0

For a single argument, - and / return the negation and the reciprocal respectively:

(- 4) ⇒ -4
(/ 4) ⇒ 1/4

The procedures max and min return the maximum and minimum respectively of the
number arguments supplied to them. Any number of arguments can be so supplied.

(max 1 3 4 2 3) ⇒ 4
(min 1 3 4 2 3) ⇒ 1

The procedure abs returns the absolute value of its argument.

(abs 3) ⇒ 3
(abs -4) ⇒ 4

This is just the tip of the iceberg. Scheme provides a large and comprehensive suite
of arithmetic and trigonometric procedures. For instance, atan, exp, and sqrt
respectively return the arctangent, natural antilogarithm, and square root of their
argument. Consult R5RS [22] for more details.

2.1.3 Characters

8

Scheme character data are represented by prefixing the character with #\. Thus, #\c
is the character c. Some non-graphic characters have more descriptive names, eg,
#\newline, #\tab. The character for space can be written #\ , or more readably,
#\space.

The character predicate is char?:

(char? #\c) ⇒ #t
(char? 1) ⇒ #f
(char? #\;) ⇒ #t

Note that a semicolon character datum does not trigger a comment.
The character data type has its set of comparison predicates: char=?, char<?,

char<=?, char>?, char>=?.

(char=? #\a #\a) ⇒ #t
(char<? #\a #\b) ⇒ #t
(char>=? #\a #\b) ⇒ #f

To make the comparisons case-insensitive, use char-ci instead of char in the pro-
cedure name:

(char-ci=? #\a #\A) ⇒ #t
(char-ci<? #\a #\B) ⇒ #t

The case conversion procedures are char-downcase and char-upcase:

(char-downcase #\A) ⇒ #\a
(char-upcase #\a) ⇒ #\A

2.1.4 Symbols

The simple data types we saw above are self-evaluating. Ie, if you typed any object
from these data types to the listener, the evaluated result returned by the listener
will be the same as what you typed in.

#t ⇒ #t
42 ⇒ 42
#\c ⇒ #\c

Symbols don’t behave the same way. This is because symbols are used by Scheme
programs as identifiers for variables, and thus will evaluate to the value that the
variable holds. Nevertheless, symbols are a simple data type, and symbols are
legitimate values that Scheme can traffic in, along with characters, numbers, and
the rest.

To specify a symbol without making Scheme think it is a variable, you should
quote the symbol:

(quote xyz)
⇒ xyz

Since this type of quoting is very common in Scheme, a convenient abbreviation
is provided. The expression

’E

will be treated by Scheme as equivalent to

(quote E)

9

Scheme symbols are named by a sequence of characters. About the only limitation
on a symbol’s name is that it shouldn’t be mistakable for some other data, eg,
characters or booleans or numbers or compound data. Thus, this-is-a-symbol,
i18n, <=>, and $!#* are all symbols; 16, -i (a complex number!), #t, "this-is-
a-string", and (barf) (a list) are not. The predicate for checking symbolness is
called symbol?:

(symbol? ’xyz) ⇒ #t
(symbol? 42) ⇒ #f

Scheme symbols are normally case-insensitive. Thus the symbols Calorie and
calorie are identical:

(eqv? ’Calorie ’calorie)
⇒ #t

We can use the symbol xyz as a global variable by using the form define:

(define xyz 9)

This says the variable xyz holds the value 9. If we feed xyz to the listener, the
result will be the value held by xyz:

xyz
⇒ 9

We can use the form set! to change the value held by a variable:

(set! xyz #\c)

Now

xyz
⇒ #\c

2.2 Compound data types

Compound data types are built by combining values from other data types in struc-
tured ways.

2.2.1 Strings

Strings are sequences of characters (not to be confused with symbols, which are
simple data that have a sequence of characters as their name). You can specify
strings by enclosing the constituent characters in double-quotes. Strings evaluate
to themselves.

"Hello, World!"
⇒ "Hello, World!"

The procedure string takes a bunch of characters and returns the string made from
them:

(string #\h #\e #\l #\l #\o)
⇒ "hello"

Let us now define a global variable greeting.

(define greeting "Hello; Hello!")

10

Note that a semicolon inside a string datum does not trigger a comment.
The characters in a given string can be individually accessed and modified.

The procedure string-ref takes a string and a (0-based) index, and returns the
character at that index:

(string-ref greeting 0)
⇒ #\H

New strings can be created by appending other strings:

(string-append "E "
"Pluribus "
"Unum")

⇒ "E Pluribus Unum"

You can make a string of a specified length, and fill it with the desired characters
later.

(define a-3-char-long-string (make-string 3))

The predicate for checking stringness is string?.
Strings obtained as a result of calls to string, make-string, and string-

append are mutable. The procedure string-set! replaces the character at a given
index:

(define hello (string #\h #\e #\l #\l #\o))
hello
⇒ "Hello"

(string-set! hello 1 #\a)
hello
⇒ "Hallo"

2.2.2 Vectors

Vectors are sequences like strings, but their elements can be anything, not just
characters. Indeed, the elements can be vectors themselves, which is a good way to
generate multidimensional vectors.

Here’s a way to create a vector of the first five integers:

(vector 0 1 2 3 4)
⇒ #(0 1 2 3 4)

Note Scheme’s representation of a vector value: a # character followed by the vec-
tor’s contents enclosed in parentheses.

In analogy with make-string, the procedure make-vector makes a vector of
a specific length:

(define v (make-vector 5))

The procedures vector-ref and vector-set! access and modify vector elements.
The predicate for checking if something is a vector is vector?.

2.2.3 Dotted pairs and lists

A dotted pair is a compound value made by combining any two arbitrary values
into an ordered couple. The first element is called the car, the second element is
called the cdr, and the combining procedure is cons.

11

(cons 1 #t)
⇒ (1 . #t)

Dotted pairs are not self-evaluating, and so to specify them directly as data (ie,
without producing them via a cons-call), one must explicitly quote them:

’(1 . #t) ⇒ (1 . #t)

(1 . #t) →ERROR!!!

The accessor procedures are car and cdr:

(define x (cons 1 #t))

(car x)
⇒ 1

(cdr x)
⇒ #t

The elements of a dotted pair can be replaced by the mutator procedures set-car!
and set-cdr!:

(set-car! x 2)

(set-cdr! x #f)

x
⇒ (2 . #f)

Dotted pairs can contain other dotted pairs.

(define y (cons (cons 1 2) 3))

y
⇒ ((1 . 2) . 3)

The car of the car of this list is 1. The cdr of the car of this list is 2. Ie,

(car (car y))
⇒ 1

(cdr (car y))
⇒ 2

Scheme provides procedure abbreviations for cascaded compositions of the car and
cdr procedures. Thus, caar stands for “car of car of”, and cdar stands for “cdr
of car of”, etc.

(caar y)
⇒ 1

(cdar y)
⇒ 2

c...r-style abbreviations for upto four cascades are guaranteed to exist. Thus,
cadr, cdadr, and cdaddr are all valid. cdadadr might be pushing it.

When nested dotting occurs along the second element, Scheme uses a special
notation to represent the resulting expression:

12

(cons 1 (cons 2 (cons 3 (cons 4 5))))
⇒ (1 2 3 4 . 5)

Ie, (1 2 3 4 . 5) is an abbreviation for (1 . (2 . (3 . (4 . 5)))). The last
cdr of this expression is 5.

Scheme provides a further abbreviation if the last cdr is a special object called
the empty list, which is represented by the expression (). The empty list is not
considered self-evaluating, and so one should quote it when supplying it as a value
in a program:

’() ⇒ ()

The abbreviation for a dotted pair of the form (1 . (2 . (3 . (4 . ())))) is

(1 2 3 4)

This special kind of nested dotted pair is called a list. This particular list is four
elements long. It could have been created by saying

(cons 1 (cons 2 (cons 3 (cons 4 ’()))))

but Scheme provides a procedure called list that makes list creation more conve-
nient. list takes any number of arguments and returns the list containing them:

(list 1 2 3 4)
⇒ (1 2 3 4)

Indeed, if we know all the elements of a list, we can use quote to specify the
list:

’(1 2 3 4)
⇒ (1 2 3 4)

List elements can be accessed by index.

(define y (list 1 2 3 4))

(list-ref y 0) ⇒ 1
(list-ref y 3) ⇒ 4

(list-tail y 1) ⇒ (2 3 4)
(list-tail y 3) ⇒ (4)

list-tail returns the tail of the list starting from the given index.
The predicates pair?, list?, and null? check if their argument is a dotted

pair, list, or the empty list, respectively:

(pair? ’(1 . 2)) ⇒ #t
(pair? ’(1 2)) ⇒ #t
(pair? ’()) ⇒ #f
(list? ’()) ⇒ #t
(null? ’()) ⇒ #t
(list? ’(1 2)) ⇒ #t
(list? ’(1 . 2)) ⇒ #f
(null? ’(1 2)) ⇒ #f
(null? ’(1 . 2)) ⇒ #f

2.2.4 Conversions between data types

13

Scheme offers many procedures for converting among the data types. We already
know how to convert between the character cases using char-downcase and char-
upcase. Characters can be converted into integers using char->integer, and in-
tegers can be converted into characters using integer->char. (The integer corre-
sponding to a character is usually its ascii code.)

(char->integer #\d) ⇒ 100
(integer->char 50) ⇒ #\2

Strings can be converted into the corresponding list of characters.

(string->list "hello") ⇒ (#\h #\e #\l #\l #\o)

Other conversion procedures in the same vein are list->string, vector->list,
and list->vector.

Numbers can be converted to strings:

(number->string 16) ⇒ "16"

Strings can be converted to numbers. If the string corresponds to no number,
#f is returned.

(string->number "16")
⇒ 16

(string->number "Am I a hot number?")
⇒ #f

string->number takes an optional second argument, the radix.

(string->number "16" 8) ⇒ 14

because 16 in base 8 is the number fourteen.
Symbols can be converted to strings, and vice versa:

(symbol->string ’symbol)
⇒ "symbol"

(string->symbol "string")
⇒ string

2.3 Other data types

Scheme contains some other data types. One is the procedure. We have already seen
many procedures, eg, display, +, cons. In reality, these are variables holding the
procedure values, which are themselves not visible as are numbers or characters:

cons
⇒ <procedure>

The procedures we have seen thus far are primitive procedures, with standard global
variables holding them. Users can create additional procedure values.

Yet another data type is the port. A port is the conduit through which input
and output is performed. Ports are usually associated with files and consoles.

In our “Hello, World!” program, we used the procedure display to write a
string to the console. display can take two arguments, one the value to be dis-
played, and the other the output port it should be displayed on.

In our program, display’s second argument was implicit. The default output
port used is the standard output port. We can get the current standard output port
via the procedure-call (current-output-port). We could have been more explicit
and written

14

(display "Hello, World!" (current-output-port))

2.4 S-expressions

All the data types discussed here can be lumped together into a single all-encompassing
data type called the s-expression (s for symbolic). Thus 42, #\c, (1 . 2), #(a b
c), "Hello", (quote xyz), (string->number "16"), and (begin (display "Hello,
World!") (newline)) are all s-expressions.

15

Chapter 3

Forms

The reader will have noted that the Scheme example programs provided thus far
are also s-expressions. This is true of all Scheme programs: Programs are data.

Thus, the character datum #\c is a program, or a form. We will use the more
general term form instead of program, so that we can deal with program fragments
too.

Scheme evaluates the form #\c to the value #\c, because #\c is self-evaluating.
Not all s-expressions are self-evaluating. For instance the symbol s-expression xyz
evaluates to the value held by the variable xyz. The list s-expression (string-
>number "16") evaluates to the number 16.

Not all s-expressions are valid programs. If you typed the dotted-pair s-
expression (1 . 2) at the Scheme listener, you will get an error.

Scheme evaluates a list form by examining the first element, or head, of the
form. If the head evaluates to a procedure, the rest of the form is evaluated to get
the procedure’s arguments, and the procedure is applied to the arguments.

If the head of the form is a special form, the evaluation proceeds in a manner
idiosyncratic to that form. Some special forms we have already seen are begin,
define, and set!. begin causes its subforms to be evaluated in order, the result
of the entire form being the result of the last subform. define introduces and
initializes a variable. set! changes the binding of a variable.

3.1 Procedures

We have seen quite a few primitive Scheme procedures, eg, cons, string->list,
and the like. Users can create their own procedures using the special form lambda.
For example, the following defines a procedure that adds 2 to its argument:

(lambda (x) (+ x 2))

The first subform, (x), is the list of parameters. The remaining subform(s)
constitute the procedure’s body. This procedure can be called on an argument, just
like a primitive procedure:

((lambda (x) (+ x 2)) 5)
⇒ 7

If we wanted to call this same procedure many times, we could create a replica
using lambda each time, but we can do better. We can use a variable to hold the
procedure value:

(define add2
(lambda (x) (+ x 2)))

We can then use the variable add2 each time we need a procedure for adding
2 to its argument:

(add2 4) ⇒ 6
(add2 9) ⇒ 11

16

3.1.1 Procedure parameters

The parameters of a lambda-procedure are specified by its first subform (the form
immediately following the head, the symbol lambda). add2 is a single-argument
— or unary — procedure, and so its parameter list is the singleton list (x). The
symbol x acts as a variable holding the procedure’s argument. Each occurrence of x
in the procedure’s body refers to the procedure’s argument. The variable x is said
to be local to the procedure’s body.

We can use 2-element lists for 2-argument procedures, and in general, n-element
lists for n-argument procedures. The following is a 2-argument procedure that
calculates the area of a rectangle. Its two arguments are the length and breadth of
the rectangle.

(define area
(lambda (length breadth)

(* length breadth)))

Notice that area multiplies its arguments, and so does the primitive procedure
*. We could have simply said:

(define area *)

3.1.2 Variable number of arguments

Some procedures can be called at different times with different numbers of argu-
ments. To do this, the lambda parameter list is replaced by a single symbol. This
symbol acts as a variable that is bound to the list of the arguments that the proce-
dure is called on.

In general, the lambda parameter list can be a list of the form (x ...), a
symbol, or a dotted pair of the form (x z). In the dotted-pair case, all the
variables before the dot are bound to the corresponding arguments in the procedure
call, with the single variable after the dot picking up all the remaining arguments
as one list.

3.2 apply

The Scheme procedure apply lets us call a procedure on a list of its arguments.

(define x ’(1 2 3))

(apply + x)
⇒ 6

In general, apply takes a procedure, followed by a variable number of other
arguments, the last of which must be a list. It constructs the argument list by
prefixing the last argument with all the other (intervening) arguments. It then
returns the result of calling the procedure on this argument list. Eg,

(apply + 1 2 3 x)
⇒ 12

3.3 Sequencing

17

We used the begin special form to bunch together a group of subforms that need to
be evaluated in sequence. Many Scheme forms have implicit begins. For example,
let’s define a 3-argument procedure that displays its three arguments, with spaces
between them. A possible definition is:

(define display3
(lambda (arg1 arg2 arg3)

(begin
(display arg1)
(display " ")
(display arg2)
(display " ")
(display arg3)
(newline))))

In Scheme, lambda-bodies are implicit begins. Thus, the begin in display3’s
body isn’t needed, although it doesn’t hurt. display3, more simply, is:

(define display3
(lambda (arg1 arg2 arg3)
(display arg1)
(display " ")
(display arg2)
(display " ")
(display arg3)
(newline)))

18

Chapter 4

Conditionals

Like all languages, Scheme provides conditionals. The basic form is the if:

(if test-expression
then-branch
else-branch)

If test-expression evaluates to true (ie, any value other than #f), the “then”
branch is evaluated. If not, the “else” branch is evaluated. The “else” branch is
optional.

(define p 80)

(if (> p 70)
’safe
’unsafe)

⇒ safe

(if (< p 90)
’low-pressure) ;no ‘‘else’’ branch

⇒ low-pressure

Scheme provides some other conditional forms for convenience. They can all
be defined as macros (chap 8) that expand into if-expressions.

4.1 when and unless

when and unless are convenient conditionals to use when only one branch (the
“then” or the “else” branch) of the basic conditional is needed.

(when (< (pressure tube) 60)
(open-valve tube)
(attach floor-pump tube)
(depress floor-pump 5)
(detach floor-pump tube)
(close-valve tube))

Assuming pressure of tube is less than 60, this conditional will attach floor-
pump to tube and depress it 5 times. (attach and depress are some suitable
procedures.)

The same program using if would be:

(if (< (pressure tube) 60)
(begin
(open-valve tube)
(attach floor-pump tube)
(depress floor-pump 5)

19

(detach floor-pump tube)
(close-valve tube)))

Note that when’s branch is an implicit begin, whereas if requires an explicit
begin if either of its branches has more than one form.

The same behavior can be written using unless as follows:

(unless (>= (pressure tube) 60)
(open-valve tube)
(attach floor-pump tube)
(depress floor-pump 5)
(detach floor-pump tube)
(close-valve tube))

Not all Schemes provide when and unless. If your Scheme does not have them, you
can define them as macros (see chap 8).

4.2 cond

The cond form is convenient for expressing nested if-expressions, where each “else”
branch but the last introduces a new if. Thus, the form

(if (char<? c #\c) -1
(if (char=? c #\c) 0

1))

can be rewritten using cond as:

(cond ((char<? c #\c) -1)
((char=? c #\c) 0)
(else 1))

The cond is thus a multi-branch conditional. Each clause has a test and an
associated action. The first test that succeeds triggers its associated action. The
final else clause is chosen if no other test succeeded.

The cond actions are implicit begins.

4.3 case

A special case of the cond can be compressed into a case expression. This is when
every test is a membership test.

(case c
((#\a) 1)
((#\b) 2)
((#\c) 3)
(else 4))

⇒ 3

The clause whose head contains the value of c is chosen.

4.4 and and or

Scheme provides special forms for boolean conjunction (“and”) and disjunction
(“or”). (We have already seen (sec 2.1.1) Scheme’s boolean negation not, which is
a procedure.)

20

The special form and returns a true value if all its subforms are true. The
actual value returned is the value of the final subform. If any of the subforms are
false, and returns #f.

(and 1 2) ⇒ 2
(and #f 1) ⇒ #f

The special form or returns the value of its first true subform. If all the subforms
are false, or returns #f.

(or 1 2) ⇒ 1
(or #f 1) ⇒ 1

Both and and or evaluate their subforms left-to-right. As soon as the result can be
determined, and and or will ignore the remaining subforms.

(and 1 #f expression-guaranteed-to-cause-error)
⇒ #f

(or 1 #f expression-guaranteed-to-cause-error)
⇒ 1

21

Chapter 5

Lexical variables

Scheme’s variables have lexical scope, ie, they are visible only to forms within a
certain contiguous stretch of program text. The global variables we have seen thus
far are no exception: Their scope is all program text, which is certainly contiguous.

We have also seen some examples of local variables. These were the lambda
parameters, which get bound each time the procedure is called, and whose scope is
that procedure’s body. Eg,

(define x 9)
(define add2 (lambda (x) (+ x 2)))

x ⇒ 9

(add2 3) ⇒ 5
(add2 x) ⇒ 11

x ⇒ 9

Here, there is a global x, and there is also a local x, the latter introduced by
procedure add2. The global x is always 9. The local x gets bound to 3 in the first
call to add2 and to the value of the global x, ie, 9, in the second call to add2. When
the procedure calls return, the global x continues to be 9.

The form set! modifies the lexical binding of a variable.

(set! x 20)

modifies the global binding of x from 9 to 20, because that is the binding of x that
is visible to set!. If the set! was inside add2’s body, it would have modified the
local x:

(define add2
(lambda (x)
(set! x (+ x 2))
x))

The set! here adds 2 to the local variable x, and returns that value. (In terms
of effect, this procedure is indistinguishable from the previous add2.) We can call
add2 on the global x, as before:

(add2 x) ⇒ 22

(Remember global x is now 20, not 9!)
The set! inside add2 affects only the local variable used by add2. Although

the local variable x got its binding from the global x, the latter is unaffected by the
set! to the local x.

x ⇒ 20

Note that we had all this discussion because we used the same identifier for a
local variable and a global variable. In any text, an identifier named x refers to the

22

lexically closest variable named x. This will shadow any outer or global x’s. Eg, in
add2, the parameter x shadows the global x.

A procedure’s body can access and modify variables in its surrounding scope
provided the procedure’s parameters don’t shadow them. This can give some inter-
esting programs. Eg,

(define counter 0)

(define bump-counter
(lambda ()
(set! counter (+ counter 1))
counter))

The procedure bump-counter is a zero-argument procedure (also called a thunk).
It introduces no local variables, and thus cannot shadow anything. Each time it
is called, it modifies the global variable counter — it increments it by 1 — and
returns its current value. Here are some successive calls to bump-counter:

(bump-counter) ⇒ 1
(bump-counter) ⇒ 2
(bump-counter) ⇒ 3

5.1 let and let*

Local variables can be introduced without explicitly creating a procedure. The
special form let introduces a list of local variables for use within its body:

(let ((x 1)
(y 2)
(z 3))

(list x y z))
⇒ (1 2 3)

As with lambda, within the let-body, the local x (bound to 1) shadows the global
x (which is bound to 20).

The local variable initializations — x to 1; y to 2; z to 3 — are not considered
part of the let body. Therefore, a reference to x in the initialization will refer to
the global, not the local x:

(let ((x 1)
(y x))

(+ x y))
⇒ 21

This is because x is bound to 1, and y is bound to the global x, which is 20.
Sometimes, it is convenient to have let’s list of lexical variables be introduced

in sequence, so that the initialization of a later variable occurs in the lexical scope
of earlier variables. The form let* does this:

(let* ((x 1)
(y x))

(+ x y))
⇒ 2

The x in y’s initialization refers to the x just above. The example is entirely equiva-
lent to — and is in fact intended to be a convenient abbreviation for — the following
program with nested lets:

23

(let ((x 1))
(let ((y x))
(+ x y)))

⇒ 2

The values bound to lexical variables can be procedures:

(let ((cons (lambda (x y) (+ x y))))
(cons 1 2))

⇒ 3

Inside this let body, the lexical variable cons adds its arguments. Outside, cons
continues to create dotted pairs.

5.2 fluid-let

A lexical variable is visible throughout its scope, provided it isn’t shadowed. Some-
times, it is helpful to temporarily set a lexical variable to a certain value. For this,
we use the form fluid-let.2

(fluid-let ((counter 99))
(display (bump-counter)) (newline)
(display (bump-counter)) (newline)
(display (bump-counter)) (newline))

This looks similar to a let, but instead of shadowing the global variable counter,
it temporarily sets it to 99 before continuing with the fluid-let body. Thus the
displays in the body produce

100
101
102

After the fluid-let expression has evaluated, the global counter reverts to the
value it had before the fluid-let.

counter ⇒ 3

Note that fluid-let has an entirely different effect from let. fluid-let does
not introduce new lexical variables like let does. It modifies the bindings of existing
lexical variables, and the modification ceases as soon as the fluid-let does.

To drive home this point, consider the program

(let ((counter 99))
(display (bump-counter)) (newline)
(display (bump-counter)) (newline)
(display (bump-counter)) (newline))

which substitutes let for fluid-let in the previous example. The output is now

4
5
6

2 fluid-let is a nonstandard special form. See sec 8.3 for a definition of fluid-
let in Scheme.

24

Ie, the global counter, which is initially 3, is updated by each call to bump-counter.
The new lexical variable counter, with its initialization of 99, has no impact on the
calls to bump-counter, because although the calls to bump-counter are within the
scope of this local counter, the body of bump-counter isn’t. The latter continues
to refer to the global counter, whose final value is 6.

counter ⇒ 6

25

Chapter 6

Recursion

A procedure body can contain calls to other procedures, not least itself:

(define factorial
(lambda (n)

(if (= n 0) 1
(* n (factorial (- n 1))))))

This recursive procedure calculates the factorial of a number. If the number is 0,
the answer is 1. For any other number n, the procedure uses itself to calculate the
factorial of n - 1, multiplies that subresult by n, and returns the product.

Mutually recursive procedures are also possible. The following predicates for
evenness and oddness use each other:

(define is-even?
(lambda (n)
(if (= n 0) #t

(is-odd? (- n 1)))))

(define is-odd?
(lambda (n)
(if (= n 0) #f

(is-even? (- n 1)))))

These definitions are offered here only as simple illustrations of mutual recur-
sion. Scheme already provides the primitive predicates even? and odd?.

6.1 letrec

If we wanted the above procedures as local variables, we could try to use a let
form:

(let ((local-even? (lambda (n)
(if (= n 0) #t

(local-odd? (- n 1)))))
(local-odd? (lambda (n)

(if (= n 0) #f
(local-even? (- n 1))))))

(list (local-even? 23) (local-odd? 23)))

This won’t quite work, because the occurrences of local-even? and local-odd? in
the initializations don’t refer to the lexical variables themselves. Changing the let
to a let* won’t work either, for while the local-even? inside local-odd?’s body
refers to the correct procedure value, the local-odd? in local-even?’s body still
points elsewhere.

To solve problems like this, Scheme provides the form letrec:

26

(letrec ((local-even? (lambda (n)
(if (= n 0) #t

(local-odd? (- n 1)))))
(local-odd? (lambda (n)

(if (= n 0) #f
(local-even? (- n 1))))))

(list (local-even? 23) (local-odd? 23)))

The lexical variables introduced by a letrec are visible not only in the letrec-
body but also within all the initializations. letrec is thus tailor-made for defining
recursive and mutually recursive local procedures.

6.2 Named let

A recursive procedure defined using letrec can describe loops. Let’s say we want
to display a countdown from 10:

(letrec ((countdown (lambda (i)
(if (= i 0) ’liftoff

(begin
(display i)
(newline)
(countdown (- i 1)))))))

(countdown 10))

This outputs on the console the numbers 10 down to 1, and returns the result
liftoff.

Scheme allows a variant of let called named let to write this kind of loop
more compactly:

(let countdown ((i 10))
(if (= i 0) ’liftoff

(begin
(display i)
(newline)
(countdown (- i 1)))))

Note the presence of a variable identifying the loop immediately after the let. This
program is equivalent to the one written with letrec. You may consider the named
let to be a macro (chap 8) expanding to the letrec form.

6.3 Iteration

countdown defined above is really a recursive procedure. Scheme can define loops
only through recursion. There are no special looping or iteration constructs.

Nevertheless, the loop as defined above is a genuine loop, in exactly the same
way that other languages bill their loops. Ie, Scheme takes special care to ensure
that recursion of the type used above will not generate the procedure call/return
overhead.

Scheme does this by a process called tail-call elimination. If you look closely
at the countdown procedure, you will note that when the recursive call occurs in
countdown’s body, it is the tail call, or the very last thing done — each invocation
of countdown either does not call itself, or when it does, it does so as its very last
act. To a Scheme implementation, this makes the recursion indistinguishable from
iteration. So go ahead, use recursion to write loops. It’s safe.

27

Here’s another example of a useful tail-recursive procedure:

(define list-position
(lambda (o l)
(let loop ((i 0) (l l))
(if (null? l) #f

(if (eqv? (car l) o) i
(loop (+ i 1) (cdr l)))))))

list-position finds the index of the first occurrence of the object o in the list l.
If the object is not found in the list, the procedure returns #f.

Here’s yet another tail-recursive procedure, one that reverses its argument list
“in place”, ie, by mutating the contents of the existing list, and without allocating
a new one:

(define reverse!
(lambda (s)
(let loop ((s s) (r ’()))
(if (null? s) r

(let ((d (cdr s)))
(set-cdr! s r)
(loop d s))))))

(reverse! is a useful enough procedure that it is provided primitively in many
Scheme dialects, eg, MzScheme and Guile.)

For some numerical examples of recursion (including iteration), see Appendix C.

6.4 Mapping a procedure across a list

A special kind of iteration involves repeating the same action for each element of a
list. Scheme offers two procedures for this situation: map and for-each.

The map procedure applies a given procedure to every element of a given list,
and returns the list of the results. Eg,

(map add2 ’(1 2 3))
⇒ (3 4 5)

The for-each procedure also applies a procedure to each element in a list, but
returns void. The procedure application is done purely for any side-effects it may
cause. Eg,

(for-each display
(list "one " "two " "buckle my shoe"))

has the side-effect of displaying the strings (in the order they appear) on the console.
The procedures applied by map and for-each need not be one-argument pro-

cedures. For example, given an n-argument procedure, map takes n lists and applies
the procedure to every set of n of arguments selected from across the lists. Eg,

(map cons ’(1 2 3) ’(10 20 30))
⇒ ((1 . 10) (2 . 20) (3 . 30))

(map + ’(1 2 3) ’(10 20 30))
⇒ (11 22 33)

28

Chapter 7

I/O

Scheme has input/output (I/O) procedures that will let you read from an input
port or write to an output port. Ports can be associated with the console, files or
strings.

7.1 Reading

Scheme’s reader procedures take an optional input port argument. If the port is
not specified, the current input port (usually the console) is assumed.

Reading can be character-, line- or s-expression-based. Each time a read is
performed, the port’s state changes so that the next read will read material following
what was already read. If the port has no more material to be read, the reader
procedure returns a specific datum called the end-of-file or eof object. This datum
is the only value that satisfies the eof-object? predicate.

The procedure read-char reads the next character from the port. read-line
reads the next line, returning it as a string (the final newline is not included). The
procedure read reads the next s-expression.

7.2 Writing

Scheme’s writer procedures take the object that is to be written and an optional
output port argument. If the port is not specified, the current output port (usually
the console) is assumed.

Writing can be character- or s-expression-based.
The procedure write-char writes the given character (without the #\) to the

output port.
The procedures write and display both write the given s-expression to the

port, with one difference: write attempts to use a machine-readable format and
display doesn’t. Eg, write uses double quotes for strings and the #\ syntax for
characters. display doesn’t.

The procedure newline starts a new line on the output port.

7.3 File ports

Scheme’s I/O procedures do not need a port argument if the port happens to be
standard input or standard output. However, if you need these ports explicitly, the
zero-argument procedures current-input-port and current-output-port fur-
nish them. Thus,

(display 9)
(display 9 (current-output-port))

29

have the same behavior.
A port is associated with a file by opening the file. The procedure open-input-

file takes a filename argument and returns a new input port associated with it.
The procedure open-output-file takes a filename argument and returns a new
output port associated with it. It is an error to open an input file that doesn’t
exist, or to open an output file that already exists.

After you have performed I/O on a port, you should close it with close-input-
port or close-output-port.

In the following, assume the file hello.txt contains the single word hello.

(define i (open-input-file "hello.txt"))

(read-char i)
⇒ #\h

(define j (read i))

j
⇒ ello

Assume the file greeting.txt does not exist before the following programs are
fed to the listener:

(define o (open-output-file "greeting.txt"))

(display "hello" o)
(write-char #\space o)
(display ’world o)
(newline o)

(close-output-port o)

The file greeting.txt will now contain the line:

hello world

7.3.1 Automatic opening and closing of file ports

Scheme supplies the procedures call-with-input-file and call-with-output-
file that will take care of opening a port and closing it after you’re done with
it.

The procedure call-with-input-file takes a filename argument and a pro-
cedure. The procedure is applied to an input port opened on the file. When the
procedure completes, its result is returned after ensuring that the port is closed.

(call-with-input-file "hello.txt"
(lambda (i)
(let* ((a (read-char i))

(b (read-char i))
(c (read-char i)))

(list a b c))))
⇒ (#\h #\e #\l)

The procedure call-with-output-file does the analogous services for an
output file.

30

7.4 String ports

It is often convenient to associate ports with strings. Thus, the procedure open-
input-string associates a port with a given string. Reader procedures on this port
will read off the string:

(define i (open-input-string "hello world"))

(read-char i)
⇒ #\h

(read i)
⇒ ello

(read i)
⇒ world

The procedure open-output-string creates an output port that will eventu-
ally be used to create a string:

(define o (open-output-string))

(write ’hello o)
(write-char #\, o)
(display " " o)
(display "world" o)

You can now use the procedure get-output-string to get the accumulated
string in the string port o:

(get-output-string o)
⇒ "hello, world"

String ports need not be explicitly closed.

7.5 Loading files

We have already seen the procedure load that loads files containing Scheme code.
Loading a file consists in evaluating in sequence every Scheme form in the file.
The pathname argument given to load is reckoned relative to the current working
directory of Scheme, which is normally the directory in which the Scheme executable
was called.

Files can load other files, and this is useful in a large program spanning many
files. Unfortunately, unless full pathnames are used, the argument file of a load is
dependent on Scheme’s current directory. Supplying full pathnames is not always
convenient, because we would like to move the program files as a unit (preserving
their relative pathnames), perhaps to many different machines.

MzScheme provides the load-relative procedure that greatly helps in fixing
the files to be loaded. load-relative, like load, takes a pathname argument.
When a load-relative call occurs in a file foo.scm, the path of its argument is
reckoned from the directory of the calling file foo.scm. In particular, this pathname
is reckoned independent of Scheme’s current directory, and thus allows convenient
multifile program development.

31

Chapter 8

Macros

Users can create their own special forms by defining macros. A macro is a symbol
that has a transformer procedure associated with it. When Scheme encounters a
macro-expression — ie, a form whose head is a macro —, it applies the macro’s
transformer to the subforms in the macro-expression, and evaluates the result of
the transformation.

Ideally, a macro specifies a purely textual transformation from code text to
other code text. This kind of transformation is useful for abbreviating an involved
and perhaps frequently occurring textual pattern.

A macro is defined using the special form define-macro (but see sec A.4).3

For example, if your Scheme lacks the conditional special form when, you could
define when as the following macro:

(define-macro when
(lambda (test . branch)
(list ’if test
(cons ’begin branch))))

This defines a when-transformer that would convert a when-expression into the
equivalent if-expression. With this macro definition in place, the when-expression

(when (< (pressure tube) 60)
(open-valve tube)
(attach floor-pump tube)
(depress floor-pump 5)
(detach floor-pump tube)
(close-valve tube))

will be converted to another expression, the result of applying the when-transformer
to the when-expression’s subforms:

(apply
(lambda (test . branch)

(list ’if test
(cons ’begin branch)))

’((< (pressure tube) 60)
(open-valve tube)
(attach floor-pump tube)
(depress floor-pump 5)
(detach floor-pump tube)
(close-valve tube)))

The transformation yields the list

3 MzScheme provides define-macro via the defmacro library. Use (require
(lib "defmacro.ss")) to load this library.

32

(if (< (pressure tube) 60)
(begin
(open-valve tube)
(attach floor-pump tube)
(depress floor-pump 5)
(detach floor-pump tube)
(close-valve tube)))

Scheme will then evaluate this expression, as it would any other.
As an additional example, here is the macro-definition for when’s counterpart

unless:

(define-macro unless
(lambda (test . branch)
(list ’if

(list ’not test)
(cons ’begin branch))))

Alternatively, we could invoke when inside unless’s definition:

(define-macro unless
(lambda (test . branch)
(cons ’when

(cons (list ’not test) branch))))

Macro expansions can refer to other macros.

8.1 Specifying the expansion as a template

A macro transformer takes some s-expressions and produces an s-expression that
will be used as a form. Typically this output is a list. In our when example, the
output list is created using

(list ’if test
(cons ’begin branch))

where test is bound to the macro’s first subform, ie,

(< (pressure tube) 60)

and branch to the rest of the macro’s subforms, ie,

((open-valve tube)
(attach floor-pump tube)
(depress floor-pump 5)
(detach floor-pump tube)
(close-valve tube))

Output lists can be quite complicated. It is easy to see that a more ambitious macro
than when could lead to quite an elaborate construction process for the output list.
In such cases, it is more convenient to specify the macro’s output form as a template,
with the macro arguments inserted at appropriate places to fill out the template for
each particular use of the macro. Scheme provides the backquote syntax to specify
such templates. Thus the expression

(list ’IF test
(cons ’BEGIN branch))

is more conveniently written as

33

‘(IF ,test
(BEGIN ,@branch))

We can refashion the when macro-definition as:

(define-macro when
(lambda (test . branch)
‘(IF ,test

(BEGIN ,@branch))))

Note that the template format, unlike the earlier list construction, gives immediate
visual indication of the shape of the output list. The backquote (‘) introduces a
template for a list. The elements of the template appear verbatim in the resulting
list, except when they are prefixed by a comma (‘,’) or a comma-splice (‘,@’). (For
the purpose of illustration, we have written the verbatim elements of the template
in UPPER-CASE.)

The comma and the comma-splice are used to insert the macro arguments
into the template. The comma inserts the result of evaluating its following expres-
sion. The comma-splice inserts the result of evaluating its following expression after
splicing it, ie, it removes the outermost set of parentheses. (This implies that an
expression introduced by comma-splice must be a list.)

In our example, given the values that test and branch are bound to, it is easy
to see that the template will expand to the required

(IF (< (pressure tube) 60)
(BEGIN

(open-valve tube)
(attach floor-pump tube)
(depress floor-pump 5)
(detach floor-pump tube)
(close-valve tube)))

8.2 Avoiding variable capture inside macros

A two-argument disjunction form, my-or, could be defined as follows:

(define-macro my-or
(lambda (x y)
‘(if ,x ,x ,y)))

my-or takes two arguments and returns the value of the first of them that is true
(ie, non-#f). In particular, the second argument is evaluated only if the first turns
out to be false.

(my-or 1 2)
⇒ 1

(my-or #f 2)
⇒ 2

There is a problem with the my-or macro as it is written. It re-evaluates the
first argument if it is true: once in the if-test, and once again in the “then” branch.
This can cause undesired behavior if the first argument were to contain side-effects,
eg,

(my-or
(begin

34

(display "doing first argument")
(newline)
#t)

2)

displays "doing first argument" twice.
This can be avoided by storing the if-test result in a local variable:

(define-macro my-or
(lambda (x y)
‘(let ((temp ,x))

(if temp temp ,y))))

This is almost OK, except in the case where the second argument happens to contain
the same identifier temp as used in the macro definition. Eg,

(define temp 3)

(my-or #f temp)
⇒ #f

Surely it should be 3! The fiasco happens because the macro uses a local variable
temp to store the value of the first argument (#f) and the variable temp in the
second argument got captured by the temp introduced by the macro.

To avoid this, we need to be careful in choosing local variables inside macro
definitions. We could choose outlandish names for such variables and hope fervently
that nobody else comes up with them. Eg,

(define-macro my-or
(lambda (x y)
‘(let ((+temp ,x))

(if +temp +temp ,y))))

This will work given the tacit understanding that +temp will not be used by code
outside the macro. This is of course an understanding waiting to be disillusioned.

A more reliable, if verbose, approach is to use generated symbols that are
guaranteed not to be obtainable by other means. The procedure gensym generates
unique symbols each time it is called. Here is a safe definition for my-or using
gensym:

(define-macro my-or
(lambda (x y)
(let ((temp (gensym)))

‘(let ((,temp ,x))
(if ,temp ,temp ,y)))))

In the macros defined in this document, in order to be concise, we will not use
the gensym approach. Instead, we will consider the point about variable capture
as having been made, and go ahead with the less cluttered +-as-prefix approach.
We will leave it to the astute reader to remember to convert these +-identifiers into
gensyms in the manner outlined above.

8.3 fluid-let

Here is a definition of a rather more complicated macro, fluid-let (sec 5.2).
fluid-let specifies temporary bindings for a set of already existing lexical vari-
ables. Given a fluid-let expression such as

35

(fluid-let ((x 9) (y (+ y 1)))
(+ x y))

we want the expansion to be

(let ((OLD-X x) (OLD-Y y))
(set! x 9)
(set! y (+ y 1))
(let ((RESULT (begin (+ x y))))
(set! x OLD-X)
(set! y OLD-Y)
RESULT))

where we want the identifiers OLD-X, OLD-Y, and RESULT to be symbols that will
not capture variables in the expressions in the fluid-let form.

Here is how we go about fashioning a fluid-let macro that implements what
we want:

(define-macro fluid-let
(lambda (xexe . body)

(let ((xx (map car xexe))
(ee (map cadr xexe))
(old-xx (map (lambda (ig) (gensym)) xexe))
(result (gensym)))

‘(let ,(map (lambda (old-x x) ‘(,old-x ,x))
old-xx xx)

,@(map (lambda (x e)
‘(set! ,x ,e))

xx ee)
(let ((,result (begin ,@body)))
,@(map (lambda (x old-x)

‘(set! ,x ,old-x))
xx old-xx)

,result)))))

The macro’s arguments are: xexe, the list of variable/expression pairs introduced
by the fluid-let; and body, the list of expressions in the body of the fluid-let.
In our example, these are ((x 9) (y (+ y 1))) and ((+ x y)) respectively.

The macro body introduces a bunch of local variables: xx is the list of the
variables extracted from the variable/expression pairs. ee is the corresponding list
of expressions. old-xx is a list of fresh identifiers, one for each variable in xx. These
are used to store the incoming values of the xx, so we can revert the xx back to them
once the fluid-let body has been evaluated. result is another fresh identifier,
used to store the value of the fluid-let body. In our example, xx is (x y) and
ee is (9 (+ y 1)). Depending on how your system implements gensym, old-xx
might be the list (GEN-63 GEN-64), and result might be GEN-65.

The output list is created by the macro for our given example looks like

(let ((GEN-63 x) (GEN-64 y))
(set! x 9)
(set! y (+ y 1))
(let ((GEN-65 (begin (+ x y))))
(set! x GEN-63)
(set! y GEN-64)
GEN-65))

which matches our requirement.

36

Chapter 9

Structures

Data that are naturally grouped are called structures. One can use Scheme’s com-
pound data types, eg, vectors or lists, to represent structures. Eg, let’s say we are
dealing with grouped data relevant to a (botanical) tree. The individual elements
of the data, or fields, could be: height, girth, age, leaf-shape, and leaf-color, making
a total of 5 fields. Such data could be represented as a 5-element vector. The
fields could be accessed using vector-ref and modified using vector-set!. Nev-
ertheless, we wouldn’t want to be saddled with the burden of remembering which
vector index corresponds to which field. That would be a thankless and error-prone
activity, especially if fields get excluded or included over the course of time.

We will therefore use a Scheme macro defstruct to define a structure data
type, which is basically a vector, but which comes with an appropriate suite of
procedures for creating instances of the structure, and for accessing and modifying
its fields. Thus, our tree structure could be defined as:

(defstruct tree height girth age leaf-shape leaf-color)

This gives us a constructor procedure named make-tree; accessor procedures
for each field, named tree.height, tree.girth, etc; and modifier procedures for
each field, named set!tree.height, set!tree.girth, etc. The constructor is used
as follows:

(define coconut
(make-tree ’height 30

’leaf-shape ’frond
’age 5))

The constructor’s arguments are in the form of twosomes, a field name followed by
its initialization. The fields can occur in any order, and may even be missing, in
which case their value is undefined.

The accessor procedures are invoked as follows:

(tree.height coconut) ⇒ 30
(tree.leaf-shape coconut) ⇒ frond
(tree.girth coconut) ⇒ <undefined>

The tree.girth accessor returns an undefined value, because we did not specify
girth for the coconut tree.

The modifier procedures are invoked as follows:

(set!tree.height coconut 40)
(set!tree.girth coconut 10)

If we now access these fields using the corresponding accessors, we will get the
new values:

(tree.height coconut) ⇒ 40
(tree.girth coconut) ⇒ 10

37

9.1 Default initializations

We can have some initializations done during the definition of the structure itself,
instead of per instance. Thus, we could postulate that leaf-shape and leaf-color
are by default frond and green respectively. We can always override these defaults
by providing explicit initialization in the make-tree call, or by using a field modifier
after the structure instance has been created:

(defstruct tree height girth age
(leaf-shape ’frond)
(leaf-color ’green))

(define palm (make-tree ’height 60))

(tree.height palm)
⇒ 60

(tree.leaf-shape palm)
⇒ frond

(define plantain
(make-tree ’height 7

’leaf-shape ’sheet))

(tree.height plantain)
⇒ 7

(tree.leaf-shape plantain)
⇒ sheet

(tree.leaf-color plantain)
⇒ green

9.2 defstruct defined

The defstruct macro definition follows:

(define-macro defstruct
(lambda (s . ff)
(let ((s-s (symbol->string s)) (n (length ff)))
(let* ((n+1 (+ n 1))

(vv (make-vector n+1)))
(let loop ((i 1) (ff ff))
(if (<= i n)
(let ((f (car ff)))
(vector-set! vv i
(if (pair? f) (cadr f) ’(if #f #f)))

(loop (+ i 1) (cdr ff)))))
(let ((ff (map (lambda (f) (if (pair? f) (car f) f))

ff)))
‘(begin

(define ,(string->symbol
(string-append "make-" s-s))

38

(lambda fvfv
(let ((st (make-vector ,n+1)) (ff ’,ff))
(vector-set! st 0 ’,s)
,@(let loop ((i 1) (r ’()))

(if (>= i n+1) r
(loop (+ i 1)

(cons ‘(vector-set! st ,i
,(vector-ref vv i))

r))))
(let loop ((fvfv fvfv))
(if (not (null? fvfv))

(begin
(vector-set! st

(+ (list-position (car fvfv) ff)
1)

(cadr fvfv))
(loop (cddr fvfv)))))

st)))
,@(let loop ((i 1) (procs ’()))

(if (>= i n+1) procs
(loop (+ i 1)

(let ((f (symbol->string
(list-ref ff (- i 1)))))

(cons
‘(define ,(string->symbol

(string-append
s-s "." f))

(lambda (x) (vector-ref x ,i)))
(cons
‘(define ,(string->symbol

(string-append
"set!" s-s "." f))

(lambda (x v)
(vector-set! x ,i v)))

procs))))))
(define ,(string->symbol (string-append s-s "?"))
(lambda (x)
(and (vector? x)

(eqv? (vector-ref x 0) ’,s))))))))))

39

Chapter 10

Alists and tables

An association list, or alist, is a Scheme list of a special format. Each element of the
list is a cons cell, the car of which is called a key, the cdr being the value associated
with the key. Eg,

((a . 1) (b . 2) (c . 3))

The procedure call (assv k al) finds the cons cell associated with key k in
alist al. The keys of the alist are compared against the given k using the equality
predicate eqv?. In general, though we may want a different predicate for key com-
parison. For instance, if the keys were case-insensitive strings, the predicate eqv?
is not very useful.

We now define a structure called table, which is a souped-up alist that allows
user-defined predicates on its keys. Its fields are equ and alist.

(defstruct table (equ eqv?) (alist ’()))

(The default predicate is eqv? — as for an ordinary alist — and the alist is initially
empty.)

We will use the procedure table-get to get the value (as opposed to the cons
cell) associated with a given key. table-get takes a table and key arguments,
followed by an optional default value that is returned if the key was not found in
the table:

(define table-get
(lambda (tbl k . d)

(let ((c (lassoc k (table.alist tbl) (table.equ tbl))))
(cond (c (cdr c))

((pair? d) (car d))))))

The procedure lassoc, used in table-get, is defined as:

(define lassoc
(lambda (k al equ?)
(let loop ((al al))
(if (null? al) #f

(let ((c (car al)))
(if (equ? (car c) k) c

(loop (cdr al))))))))

The procedure table-put! is used to update a key’s value in the given table:

(define table-put!
(lambda (tbl k v)
(let ((al (table.alist tbl)))
(let ((c (lassoc k al (table.equ tbl))))
(if c (set-cdr! c v)

(set!table.alist tbl (cons (cons k v) al)))))))

The procedure table-for-each calls the given procedure on every key/value
pair in the table

40

(define table-for-each
(lambda (tbl p)
(for-each
(lambda (c)
(p (car c) (cdr c)))

(table.alist tbl))))

41

Chapter 11

System interface

Useful Scheme programs often need to interact with the underlying operating sys-
tem.

11.1 Checking for and deleting files

file-exists? checks if its argument string names a file. delete-file deletes its
argument file. These procedures are not part of the Scheme standard, but are
available in most implementations. These procedures work reliably only for files
that are not directories. (Their behavior on directories is dialect-specific.)

file-or-directory-modify-seconds returns the time when its argument file
or directory was last modified. Time is reckoned in seconds from 12 AM GMT, 1
January 1970. Eg,

(file-or-directory-modify-seconds "hello.scm")
⇒ 893189629

assuming that the file hello.scm was last messed with sometime on 21 April 1998.

11.2 Calling operating-system commands

The system procedure executes its argument string as an operating-system com-
mand.4 It returns true if the command executed successfully with an exit status
0, and false if it failed to execute or exited with a non-zero status. Any output
generated by the command goes to standard output.

(system "ls")
;lists current directory

(define fname "spot")

(system (string-append "test -f " fname))
;tests if file ‘spot’ exists

(system (string-append "rm -f " fname))
;removes ‘spot’

The last two forms are equivalent to

(file-exists? fname)

(delete-file fname)

4 MzScheme provides the system procedure via the process library. Use (re-
quire (lib "process.ss")) to load this library.

42

11.3 Environment variables

The getenv procedure returns the setting of an operating-system environment vari-
able. Eg,

(getenv "HOME")
⇒ "/home/dorai"

(getenv "SHELL")
⇒ "/bin/bash"

43

Chapter 12

Objects and classes

A class describes a collection of objects that share behavior. The objects described
by a class are called the instances of the class. The class specifies the names of the
slots that the instance has, although it is up to the instance to populate these slots
with particular values. The class also specifies the methods that can be applied to
its instances. Slot values can be anything, but method values must be procedures.

Classes are hierarchical. Thus, a class can be a subclass of another class, which
is called its superclass. A subclass not only has its own direct slots and methods,
but also inherits all the slots and methods of its superclass. If a class has a slot
or method that has the same name as its superclass’s, then the subclass’s slot or
method is the one that is retained.

12.1 A simple object system

Let us now implement a basic object system in Scheme. We will allow only one
superclass per class (single inheritance). If we don’t want to specify a superclass,
we will use #t as a “zero” superclass, one that has neither slots nor methods. The
superclass of #t is deemed to be itself.

As a first approximation, it is useful to define classes using a struct called
standard-class, with fields for the slot names, the superclass, and the methods.
The first two fields we will call slots and superclass respectively. We will use
two fields for methods, a method-names field that will hold the list of names of the
class’s methods, and a method-vector field that will hold the vector of the values
of the class’s methods.5 Here is the definition of the standard-class:

(defstruct standard-class
slots superclass method-names method-vector)

We can use make-standard-class, the maker procedure of standard-class, to
create a new class. Eg,

(define trivial-bike-class
(make-standard-class
’superclass #t
’slots ’(frame parts size)
’method-names ’()
’method-vector #()))

This is a very simple class. More complex classes will have non-trivial superclasses
and methods, which will require a lot of standard initialization that we would like

5 We could in theory define methods also as slots (whose values happen to be
procedures), but there is a good reason not to. The instances of a class share
methods but in general differ in their slot values. In other words, methods can be
included in the class definition and don’t have to be allocated per instance as slots
have to be.

44

to hide within the class creation process. We will therefore define a macro called
create-class that will make the appropriate call to make-standard-class.

(define-macro create-class
(lambda (superclass slots . methods)
‘(create-class-proc
,superclass
(list ,@(map (lambda (slot) ‘’,slot) slots))
(list ,@(map (lambda (method) ‘’,(car method)) methods))
(vector ,@(map (lambda (method) ‘,(cadr method)) methods)))))

We will defer the definition of the create-class-proc procedure to later.
The procedure make-instance creates an instance of a class by generating a

fresh vector based on information enshrined in the class. The format of the instance
vector is very simple: Its first element will refer to the class, and its remaining
elements will be slot values. make-instance’s arguments are the class followed by
a sequence of twosomes, where each twosome is a slot name and the value it assumes
in the instance.

(define make-instance
(lambda (class . slot-value-twosomes)

;Find ‘n’, the number of slots in ‘class’.
;Create an instance vector of length ‘n + 1’,
;because we need one extra element in the instance
;to contain the class.

(let* ((slotlist (standard-class.slots class))
(n (length slotlist))
(instance (make-vector (+ n 1))))

(vector-set! instance 0 class)

;Fill each of the slots in the instance
;with the value as specified in the call to
;‘make-instance’.

(let loop ((slot-value-twosomes slot-value-twosomes))
(if (null? slot-value-twosomes) instance

(let ((k (list-position (car slot-value-twosomes)
slotlist)))

(vector-set! instance (+ k 1)
(cadr slot-value-twosomes))

(loop (cddr slot-value-twosomes))))))))

Here is an example of instantiating a class:

(define my-bike
(make-instance trivial-bike-class

’frame ’cromoly
’size ’18.5
’parts ’alivio))

This binds my-bike to the instance

#(<trivial-bike-class> cromoly 18.5 alivio)

where <trivial-bike-class> is a Scheme datum (another vector) that is the value
of trivial-bike-class, as defined above.

The procedure class-of returns the class of an instance:

45

(define class-of
(lambda (instance)
(vector-ref instance 0)))

This assumes that class-of’s argument will be a class instance, ie, a vector whose
first element points to some instantiation of the standard-class. We probably
want to make class-of return an appropriate value for any kind of Scheme object
we feed to it.

(define class-of
(lambda (x)
(if (vector? x)

(let ((n (vector-length x)))
(if (>= n 1)

(let ((c (vector-ref x 0)))
(if (standard-class? c) c #t))

#t))
#t)))

The class of a Scheme object that isn’t created using standard-class is deemed
to be #t, the zero class.

The procedures slot-value and set!slot-value access and mutate the values
of a class instance:

(define slot-value
(lambda (instance slot)
(let* ((class (class-of instance))

(slot-index
(list-position slot (standard-class.slots class))))

(vector-ref instance (+ slot-index 1)))))

(define set!slot-value
(lambda (instance slot new-val)
(let* ((class (class-of instance))

(slot-index
(list-position slot (standard-class.slots class))))

(vector-set! instance (+ slot-index 1) new-val))))

We are now ready to tackle the definition of create-class-proc. This procedure
takes a superclass, a list of slots, a list of method names, and a vector of methods
and makes the appropriate call to make-standard-class. The only tricky part is
the value to be given to the slots field. It can’t be just the slots argument supplied
via create-class, for a class must include the slots of its superclass as well. We
must append the supplied slots to the superclass’s slots, making sure that we don’t
have duplicate slots.

(define create-class-proc
(lambda (superclass slots method-names method-vector)

(make-standard-class
’superclass superclass
’slots
(let ((superclass-slots

(if (not (eqv? superclass #t))
(standard-class.slots superclass)
’())))

(if (null? superclass-slots) slots
(delete-duplicates

46

(append slots superclass-slots))))
’method-names method-names
’method-vector method-vector)))

The procedure delete-duplicates called on a list s, returns a new list that only
includes the last occurrence of each element of s.

(define delete-duplicates
(lambda (s)
(if (null? s) s

(let ((a (car s)) (d (cdr s)))
(if (memv a d) (delete-duplicates d)

(cons a (delete-duplicates d)))))))

Now to the application of methods. We invoke the method on an instance by
using the procedure send. send’s arguments are the method name, followed by the
instance, followed by any arguments the method has in addition to the instance
itself. Since methods are stored in the instance’s class instead of the instance itself,
send will search the instance’s class for the method. If the method is not found
there, it is looked for in the class’s superclass, and so on further up the superclass
chain:

(define send
(lambda (method instance . args)
(let ((proc

(let loop ((class (class-of instance)))
(if (eqv? class #t) (error ’send)

(let ((k (list-position
method
(standard-class.method-names class))))

(if k
(vector-ref (standard-class.method-vector class)

k)
(loop (standard-class.superclass class))))))))

(apply proc instance args))))

We can now define some more interesting classes:

(define bike-class
(create-class
#t
(frame size parts chain tires)
(check-fit (lambda (me inseam)

(let ((bike-size (slot-value me ’size))
(ideal-size (* inseam 3/5)))

(let ((diff (- bike-size ideal-size)))
(cond ((<= -1 diff 1) ’perfect-fit)

((<= -2 diff 2) ’fits-well)
((< diff -2) ’too-small)
((> diff 2) ’too-big))))))))

Here, bike-class includes a method check-fit, that takes a bike and an inseam
measurement and reports on the fit of the bike for a person of that inseam.

Let’s redefine my-bike:

(define my-bike
(make-instance bike-class

’frame ’titanium ; I wish

47

’size 21
’parts ’ultegra
’chain ’sachs
’tires ’continental))

To check if this will fit someone with inseam 32:

(send ’check-fit my-bike 32)

We can subclass bike-class.

(define mtn-bike-class
(create-class
bike-class
(suspension)
(check-fit (lambda (me inseam)

(let ((bike-size (slot-value me ’size))
(ideal-size (- (* inseam 3/5) 2)))

(let ((diff (- bike-size ideal-size)))
(cond ((<= -2 diff 2) ’perfect-fit)

((<= -4 diff 4) ’fits-well)
((< diff -4) ’too-small)
((> diff 4) ’too-big))))))))

mtn-bike-class adds a slot called suspension and uses a slightly different defini-
tion for the method check-fit.

12.2 Classes are instances too

It cannot have escaped the astute reader that classes themselves look like they
could be the instances of some class (a metaclass, if you will). Note that all classes
have some common behavior: each of them has slots, a superclass, a list of method
names, and a method vector. make-instance looks like it could be their shared
method. This suggests that we could specify this common behavior by another class
(which itself should, of course, be a class instance too).

In concrete terms, we could rewrite our class implementation to itself make use
of the object-oriented approach, provided we make sure we don’t run into chicken-
and-egg problems. In effect, we will be getting rid of the class struct and its
attendant procedures and rely on the rest of the machinery to define classes as
objects.

Let us identify standard-class as the class of which other classes are instances
of. In particular, standard-class must be an instance of itself. What should
standard-class look like?

We know standard-class is an instance, and we are representing instances by
vectors. So it is a vector whose first element holds its class, ie, itself, and whose
remaining elements are slot values. We have identified four slots that all classes
must have, so standard-class is a 5-element vector.

(define standard-class
(vector ’value-of-standard-class-goes-here

(list ’slots
’superclass
’method-names
’method-vector)

#t
’(make-instance)

48

(vector make-instance)))

Note that the standard-class vector is incompletely filled in: the symbol value-
of-standard-class-goes-here functions as a placeholder. Now that we have de-
fined a standard-class value, we can use it to identify its own class, which is
itself:

(vector-set! standard-class 0 standard-class)

Note that we cannot rely on procedures based on the class struct anymore.
We should replace all calls of the form

(standard-class? x)
(standard-class.slots c)
(standard-class.superclass c)
(standard-class.method-names c)
(standard-class.method-vector c)
(make-standard-class ...)

by

(and (vector? x) (eqv? (vector-ref x 0) standard-class))
(vector-ref c 1)
(vector-ref c 2)
(vector-ref c 3)
(vector-ref c 4)
(send ’make-instance standard-class ...)

12.3 Multiple inheritance

It is easy to modify the object system to allow classes to have more than one super-
class. We redefine the standard-class to have a slot called class-precedence-
list instead of superclass. The class-precedence-list of a class is the list of
all its superclasses, not just the direct superclasses specified during the creation of
the class with create-class. The name implies that the superclasses are listed in
a particular order, where superclasses occurring toward the front of the list have
precedence over the ones in the back of the list.

(define standard-class
(vector ’value-of-standard-class-goes-here

(list ’slots ’class-precedence-list ’method-names ’method-
vector)

’()
’(make-instance)
(vector make-instance)))

Not only has the list of slots changed to include the new slot, but the erstwhile
superclass slot is now () instead of #t. This is because the class-precedence-
list of standard-class must be a list. We could have had its value be (#t), but we
will not mention the zero class since it is in every class’s class-precedence-list.

The create-class macro has to modified to accept a list of direct superclasses
instead of a solitary superclass:

(define-macro create-class
(lambda (direct-superclasses slots . methods)
‘(create-class-proc
(list ,@(map (lambda (su) ‘,su) direct-superclasses))

49

(list ,@(map (lambda (slot) ‘’,slot) slots))
(list ,@(map (lambda (method) ‘’,(car method)) methods))
(vector ,@(map (lambda (method) ‘,(cadr method)) methods))
)))

The create-class-proc must calculate the class precedence list from the sup-
plied direct superclasses, and the slot list from the class precedence list:

(define create-class-proc
(lambda (direct-superclasses slots method-names method-vector)
(let ((class-precedence-list

(delete-duplicates
(append-map
(lambda (c) (vector-ref c 2))
direct-superclasses))))

(send ’make-instance standard-class
’class-precedence-list class-precedence-list
’slots
(delete-duplicates
(append slots (append-map

(lambda (c) (vector-ref c 1))
class-precedence-list)))

’method-names method-names
’method-vector method-vector))))

The procedure append-map is a composition of append and map:

(define append-map
(lambda (f s)

(let loop ((s s))
(if (null? s) ’()

(append (f (car s))
(loop (cdr s)))))))

The procedure send has to search through the class precedence list left to right
when it hunts for a method.

(define send
(lambda (method-name instance . args)
(let ((proc

(let ((class (class-of instance)))
(if (eqv? class #t) (error ’send)

(let loop ((class class)
(superclasses (vector-ref class 2)))

(let ((k (list-position
method-name
(vector-ref class 3))))

(cond (k (vector-ref
(vector-ref class 4) k))

((null? superclasses) (error ’send))
(else (loop (car superclasses)

(cdr superclasses))))
))))))

(apply proc instance args))))

50

Chapter 13

Jumps

One of the signal features of Scheme is its support for jumps or nonlocal control.
Specifically, Scheme allows program control to jump to arbitrary locations in the
program, in contrast to the more restrained forms of program control flow allowed by
conditionals and procedure calls. Scheme’s nonlocal control operator is a procedure
named call-with-current-continuation. We will see how this operator can be
used to create a breathtaking variety of control idioms.

13.1 call-with-current-continuation

The operator call-with-current-continuation calls its argument, which must
be a unary procedure, with a value called the “current continuation”. If nothing
else, this explains the name of the operator. But it is a long name, and is often
abbreviated call/cc.6

The current continuation at any point in the execution of a program is an
abstraction of the rest of the program. Thus in the program

(+ 1 (call/cc
(lambda (k)
(+ 2 (k 3)))))

the rest of the program, from the point of view of the call/cc-application, is the
following program-with-a-hole (with [] representing the hole):

(+ 1 [])

In other words, this continuation is a program that will add 1 to whatever is used
to fill its hole.

This is what the argument of call/cc is called with. Remember that the
argument of call/cc is the procedure

(lambda (k)
(+ 2 (k 3)))

This procedure’s body applies the continuation (bound now to the parameter k) to
the argument 3. This is when the unusual aspect of the continuation springs to the
fore. The continuation call abruptly abandons its own computation and replaces it
with the rest of the program saved in k! In other words, the part of the procedure
involving the addition of 2 is jettisoned, and k’s argument 3 is sent directly to the
program-with-the-hole:

(+ 1 [])

The program now running is simply

6 If your Scheme does not already have this abbreviation, include (define call/cc
call-with-current-continuation) in your initialization code and protect your-
self from RSI.

51

(+ 1 3)

which returns 4. In sum,

(+ 1 (call/cc
(lambda (k)
(+ 2 (k 3)))))

⇒ 4

The above illustrates what is called an escaping continuation, one used to exit out
of a computation (here: the (+ 2 []) computation). This is a useful property, but
Scheme’s continuations can also be used to return to previously abandoned contexts,
and indeed to invoke them many times. The “rest of the program” enshrined in
a continuation is available whenever and how many ever times we choose to recall
it, and this is what contributes to the great and sometimes confusing versatility of
call/cc. As a quick example, type the following at the listener:

(define r #f)

(+ 1 (call/cc
(lambda (k)
(set! r k)
(+ 2 (k 3)))))

⇒ 4

The latter expression returns 4 as before. The difference between this use of call/cc
and the previous example is that here we also store the continuation k in a global
variable r.

Now we have a permanent record of the continuation in r. If we call it on a
number, it will return that number incremented by 1:

(r 5)
⇒ 6

Note that r will abandon its own continuation, which is better illustrated by em-
bedding the call to r inside some context:

(+ 3 (r 5))
⇒ 6

The continuations provided by call/cc are thus abortive continuations.

13.2 Escaping continuations

Escaping continuations are the simplest use of call/cc and are very useful for
programming procedure or loop exits. Consider a procedure list-product that
takes a list of numbers and multiplies them. A straightforward recursive definition
for list-product is:

(define list-product
(lambda (s)
(let recur ((s s))

(if (null? s) 1
(* (car s) (recur (cdr s)))))))

There is a problem with this solution. If one of the elements in the list is 0, and if
there are many elements after 0 in the list, then the answer is a foregone conclusion.
Yet, the code will have us go through many fruitless recursive calls to recur before
producing the answer. This is where an escape continuation comes in handy. Using
call/cc, we can rewrite the procedure as:

52

(define list-product
(lambda (s)
(call/cc
(lambda (exit)
(let recur ((s s))
(if (null? s) 1

(if (= (car s) 0) (exit 0)
(* (car s) (recur (cdr s))))))))))

If a 0 element is encountered, the continuation exit is called with 0, thereby avoid-
ing further calls to recur.

13.3 Tree matching

A more involved example of continuation usage is the problem of determining if two
trees (arbitrarily nested dotted pairs) have the same fringe, ie, the same elements
(or leaves) in the same sequence. Eg,

(same-fringe? ’(1 (2 3)) ’((1 2) 3))
⇒ #t

(same-fringe? ’(1 2 3) ’(1 (3 2)))
⇒ #f

The purely functional approach is to flatten both trees and check if the results
match.

(define same-fringe?
(lambda (tree1 tree2)
(let loop ((ftree1 (flatten tree1))

(ftree2 (flatten tree2)))
(cond ((and (null? ftree1) (null? ftree2)) #t)

((or (null? ftree1) (null? ftree2)) #f)
((eqv? (car ftree1) (car ftree2))
(loop (cdr ftree1) (cdr ftree2)))
(else #f)))))

(define flatten
(lambda (tree)
(cond ((null? tree) ’())

((pair? (car tree))
(append (flatten (car tree))

(flatten (cdr tree))))
(else
(cons (car tree)

(flatten (cdr tree)))))))

However, this traverses the trees completely to flatten them, and then again till it
finds non-matching elements. Furthermore, even the best flattening algorithms will
require conses equal to the total number of leaves. (Destructively modifying the
input trees is not an option.)

We can use call/cc to solve the problem without needless traversal and with-
out any consing. Each tree is mapped to a generator, a procedure with internal
state that successively produces the leaves of the tree in the left-to-right order that
they occur in the tree.

53

(define tree->generator
(lambda (tree)
(let ((caller ’*))
(letrec

((generate-leaves
(lambda ()
(let loop ((tree tree))
(cond ((null? tree) ’skip)

((pair? tree)
(loop (car tree))
(loop (cdr tree)))
(else
(call/cc
(lambda (rest-of-tree)
(set! generate-leaves
(lambda ()
(rest-of-tree ’resume)))

(caller tree))))))
(caller ’()))))

(lambda ()
(call/cc
(lambda (k)
(set! caller k)
(generate-leaves))))))))

When a generator created by tree->generator is called, it will store the continua-
tion of its call in caller, so that it can know who to send the leaf to when it finds
it. It then calls an internal procedure called generate-leaves which runs a loop
traversing the tree from left to right. When the loop encounters a leaf, it will use
caller to return the leaf as the generator’s result, but it will remember to store
the rest of the loop (captured as a call/cc continuation) in the generate-leaves
variable. The next time the generator is called, the loop is resumed where it left off
so it can hunt for the next leaf.

Note that the last thing generate-leaves does, after the loop is done, is to
return the empty list to the caller. Since the empty list is not a valid leaf value,
we can use it to tell that the generator has no more leaves to generate.

The procedure same-fringe? maps each of its tree arguments to a generator,
and then calls these two generators alternately. It announces failure as soon as two
non-matching leaves are found:

(define same-fringe?
(lambda (tree1 tree2)
(let ((gen1 (tree->generator tree1))

(gen2 (tree->generator tree2)))
(let loop ()
(let ((leaf1 (gen1))

(leaf2 (gen2)))
(if (eqv? leaf1 leaf2)

(if (null? leaf1) #t (loop))
#f))))))

It is easy to see that the trees are traversed at most once, and in case of mismatch,
the traversals extend only upto the leftmost mismatch. cons is not used.

13.4 Coroutines

54

The generators used above are interesting generalizations of the procedure concept.
Each time the generator is called, it resumes its computation, and when it has a
result for its caller returns it, but only after storing its continuation in an internal
variable so the generator can be resumed again. We can generalize generators
further, so that they can mutually resume each other, sending results back and
forth amongst themselves. Such procedures are called coroutines [18].

We will view a coroutine as a unary procedure, whose body can contain resume
calls. resume is a two-argument procedure used by a coroutine to resume another
coroutine with a transfer value. The macro coroutine defines such a coroutine
procedure, given a variable name for the coroutine’s initial argument, and the body
of the coroutine.

(define-macro coroutine
(lambda (x . body)
‘(letrec ((local-control-state

(lambda (,x) ,@body))
(resume
(lambda (c v)
(call/cc
(lambda (k)
(set! local-control-state k)
(c v))))))

(lambda (v)
(local-control-state v)))))

A call of this macro creates a coroutine procedure (let’s call it A) that can be called
with one argument. A has an internal variable called local-control-state that
stores, at any point, the remaining computation of the coroutine. Initially this is
the entire coroutine computation. When resume is called — ie, invoking another
coroutine B — the current coroutine will update its local-control-state value
to the rest of itself, stop itself, and then jump to the resumed coroutine B. When
coroutine A is itself resumed at some later point, its computation will proceed from
the continuation stored in its local-control-state.

13.4.1 Tree-matching with coroutines

Tree-matching is further simplified using coroutines. The matching process is coded
as a coroutine that depends on two other coroutines to supply the leaves of the
respective trees:

(define make-matcher-coroutine
(lambda (tree-cor-1 tree-cor-2)

(coroutine dont-need-an-init-arg
(let loop ()
(let ((leaf1 (resume tree-cor-1 ’get-a-leaf))

(leaf2 (resume tree-cor-2 ’get-a-leaf)))
(if (eqv? leaf1 leaf2)

(if (null? leaf1) #t (loop))
#f))))))

The leaf-generator coroutines remember who to send their leaves to:

(define make-leaf-gen-coroutine
(lambda (tree matcher-cor)

55

(coroutine dont-need-an-init-arg
(let loop ((tree tree))
(cond ((null? tree) ’skip)

((pair? tree)
(loop (car tree))
(loop (cdr tree)))

(else
(resume matcher-cor tree))))

(resume matcher-cor ’()))))

The same-fringe? procedure can now almost be written as

(define same-fringe?
(lambda (tree1 tree2)
(letrec ((tree-cor-1

(make-leaf-gen-coroutine
tree1
matcher-cor))

(tree-cor-2
(make-leaf-gen-coroutine
tree2
matcher-cor))

(matcher-cor
(make-matcher-coroutine
tree-cor-1
tree-cor-2)))

(matcher-cor ’start-ball-rolling))))

Unfortunately, Scheme’s letrec can resolve mutually recursive references amongst
the lexical variables it introduces only if such variable references are wrapped inside
a lambda. And so we write:

(define same-fringe?
(lambda (tree1 tree2)
(letrec ((tree-cor-1

(make-leaf-gen-coroutine
tree1
(lambda (v) (matcher-cor v))))

(tree-cor-2
(make-leaf-gen-coroutine
tree2
(lambda (v) (matcher-cor v))))

(matcher-cor
(make-matcher-coroutine
(lambda (v) (tree-cor-1 v))
(lambda (v) (tree-cor-2 v)))))

(matcher-cor ’start-ball-rolling))))

Note that call/cc is not called directly at all in this rewrite of same-fringe?. All
the continuation manipulation is handled for us by the coroutine macro.

56

Chapter 14

Nondeterminism

McCarthy’s nondeterministic operator amb [24, 4, 31] is as old as Lisp itself, al-
though it is present in no Lisp. amb takes zero or more expressions, and makes a
nondeterministic (or “ambiguous”) choice among them, preferring those choices that
cause the program to converge meaningfully. Here we will explore an embedding of
amb in Scheme that makes a depth-first selection of the ambiguous choices, and uses
Scheme’s control operator call/cc to backtrack for alternate choices. The result
is an elegant backtracking strategy that can be used for searching problem spaces
directly in Scheme without recourse to an extended language. The embedding re-
calls the continuation strategies used to implement Prolog-style logic programming
[16, 7], but is sparer because the operator provided is much like a Scheme boolean
operator, does not require special contexts for its use, and does not rely on linguistic
infrastructure such as logic variables and unification.

14.1 Description of amb

An accessible description of amb and many example uses are found in the premier
Scheme textbook SICP [1]. Informally, amb takes zero or more expressions and
nondeterministically returns the value of one of them. Thus,

(amb 1 2)

may evaluate to 1 or 2.
amb called with no expressions has no value to return, and is considered to fail.

Thus,

(amb)
→ERROR!!! amb tree exhausted

(We will examine the wording of the error message later.)
In particular, amb is required to return a value if at least one its subexpressions

converges, ie, doesn’t fail. Thus,

(amb 1 (amb))

and

(amb (amb) 1)

both return 1.
Clearly, amb cannot simply be equated to its first subexpression, since it has to

return a non-failing value, if this is at all possible. However, this is not all: The bias
for convergence is more stringent than a merely local choice of amb’s subexpressions.
amb should furthermore return that convergent value that makes the entire program
converge. In denotational parlance, amb is an angelic operator.

For example,

(amb #t #f)

57

may return either #t or #f, but in the program

(if (amb #t #f)
1
(amb))

the first amb-expression must return #t. If it returned #f, the if’s “else” branch
would be chosen, which causes the entire program to fail.

14.2 Implementing amb in Scheme

In our implementation of amb, we will favor amb’s subexpressions from left to right.
Ie, the first subexpression is chosen, and if it leads to overall failure, the second
is picked, and so on. ambs occurring later in the control flow of the program are
searched for alternates before backtracking to previous ambs. In other words, we
perform a depth-first search of the amb choice tree, and whenever we brush against
failure, we backtrack to the most recent node of the tree that offers a further choice.
(This is called chronological backtracking.)

We first define a mechanism for setting the base failure continuation:

(define amb-fail ’*)

(define initialize-amb-fail
(lambda ()
(set! amb-fail
(lambda ()
(error "amb tree exhausted")))))

(initialize-amb-fail)

When amb fails, it invokes the continuation bound at the time to amb-fail. This
is the continuation invoked when all the alternates in the amb choice tree have been
tried and were found to fail.

We define amb as a macro that accepts an indefinite number of subexpressions.

(define-macro amb
(lambda alts...
‘(let ((+prev-amb-fail amb-fail))

(call/cc
(lambda (+sk)

,@(map (lambda (alt)
‘(call/cc
(lambda (+fk)
(set! amb-fail
(lambda ()
(set! amb-fail +prev-amb-fail)
(+fk ’fail)))

(+sk ,alt))))
alts...)

(+prev-amb-fail))))))

A call to amb first stores away, in +prev-amb-fail, the amb-fail value that was
current at the time of entry. This is because the amb-fail variable will be set to
different failure continuations as the various alternates are tried.

58

We then capture the amb’s entry continuation +sk, so that when one of the
alternates evaluates to a non-failing value, it can immediately exit the amb.

Each alternate alt is tried in sequence (the implicit-begin sequence of Scheme).
First, we capture the current continuation +fk, wrap it in a procedure and

set amb-fail to that procedure. The alternate is then evaluated as (+sk alt). If
alt evaluates without failure, its return value is fed to the continuation +sk, which
immediately exits the amb call. If alt fails, it calls amb-fail. The first duty of
amb-fail is to reset amb-fail to the value it had at the time of entry. It then
invokes the failure continuation +fk, which causes the next alternate, if any, to be
tried.

If all alternates fail, the amb-fail at amb entry, which we had stored in +prev-
amb-fail, is called.

14.3 Using amb in Scheme

To choose a number between 1 and 10, one could say

(amb 1 2 3 4 5 6 7 8 9 10)

To be sure, as a program, this will give 1, but depending on the context, it could
return any of the mentioned numbers.

The procedure number-between is a more abstract way to generate numbers
from a given lo to a given hi (inclusive):

(define number-between
(lambda (lo hi)
(let loop ((i lo))
(if (> i hi) (amb)

(amb i (loop (+ i 1)))))))

Thus (number-between 1 6) will first generate 1. Should that fail, the loop iter-
ates, producing 2. Should that fail, we get 3, and so on, until 6. After 6, loop is
called with the number 7, which being more than 6, invokes (amb), which causes final
failure. (Recall that (amb) by itself guarantees failure.) At this point, the program
containing the call to (number-between 1 6) will backtrack to the chronologically
previous amb-call, and try to satisfy that call in another fashion.

The guaranteed failure of (amb) can be used to program assertions.

(define assert
(lambda (pred)
(if (not pred) (amb))))

The call (assert pred) insists that pred be true. Otherwise it will cause the
current amb choice point to fail.7

Here is a procedure using assert that generates a prime less than or equal to
its argument hi:

(define gen-prime
(lambda (hi)
(let ((i (number-between 2 hi)))

(assert (prime? i))
i)))

7 SICP names this procedure require. We use the identifier assert in order
to avoid confusion with the popular if informal use of the identifier require for
something else, viz, an operator that loads code modules on a per-need basis.

59

This seems devilishly simple, except that when called as a program with any number
(say 20), it will produce the uninteresting first solution, ie, 2.

We would certainly like to get all the solutions, not just the first. In this case,
we may want all the primes below 20. One way is to explicitly call the failure
continuation left after the program has produced its first solution. Thus,

(amb)
=> 3

This leaves yet another failure continuation, which can be called again for yet an-
other solution:

(amb)
=> 5

The problem with this method is that the program is initially called at the Scheme
prompt, and successive solutions are also obtained by calling amb at the Scheme
prompt. In effect, we are using different programs (we cannot predict how many!),
carrying over information from a previous program to the next. Instead, we would
like to be able to get these solutions as the return value of a form that we can call
in any context. To this end, we define the bag-of macro, which returns all the
successful instantiations of its argument. (If the argument never succeeds, bag-of
returns the empty list.) Thus, we could say,

(bag-of
(gen-prime 20))

and it would return

(2 3 5 7 11 13 17 19)

The bag-of macro is defined as follows:

(define-macro bag-of
(lambda (e)

‘(let ((+prev-amb-fail amb-fail)
(+results ’()))

(if (call/cc
(lambda (+k)
(set! amb-fail (lambda () (+k #f)))
(let ((+v ,e))
(set! +results (cons +v +results))
(+k #t))))

(amb-fail))
(set! amb-fail +prev-amb-fail)
(reverse! +results))))

bag-of first saves away its entry amb-fail. It redefines amb-fail to a local con-
tinuation +k created within an if-test. Inside the test, the bag-of argument e is
evaluated. If e succeeds, its result is collected into a list called +results, and the
local continuation is called with the value #t. This causes the if-test to succeed,
causing e to be retried at its next backtrack point. More results for e are obtained
this way, and they are all collected into +results.

Finally, when e fails, it will call the base amb-fail, which is simply a call to
the local continuation with the value #f. This pushes control past the if. We
restore amb-fail to its pre-entry value, and return the +results. (The reverse!
is simply to produce the results in the order in which they were generated.)

60

14.4 Logic puzzles

The power of depth-first search coupled with backtracking becomes obvious when
applied to solving logic puzzles. These problems are extraordinarily difficult to solve
procedurally, but can be solved concisely and declaratively with amb, without taking
anything away from the charm of solving the puzzle.

14.4.1 The Kalotan puzzle

The Kalotans are a tribe with a peculiar quirk.8 Their males always tell the truth.
Their females never make two consecutive true statements, or two consecutive un-
true statements.

An anthropologist (let’s call him Worf) has begun to study them. Worf does
not yet know the Kalotan language. One day, he meets a Kalotan (heterosexual)
couple and their child Kibi. Worf asks Kibi: “Are you a boy?” Kibi answers in
Kalotan, which of course Worf doesn’t understand.

Worf turns to the parents (who know English) for explanation. One of them
says: “Kibi said: ‘I am a boy.’ ” The other adds: “Kibi is a girl. Kibi lied.”

Solve for the sex of the parents and Kibi.
—

The solution consists in introducing a bunch of variables, allowing them to take
a choice of values, and enumerating the conditions on them as a sequence of assert
expressions.

The variables: parent1, parent2, and kibi are the sexes of the parents (in
order of appearance) and Kibi; kibi-self-desc is the sex Kibi claimed to be (in
Kalotan); kibi-lied? is the boolean on whether Kibi’s claim was a lie.

(define solve-kalotan-puzzle
(lambda ()
(let ((parent1 (amb ’m ’f))

(parent2 (amb ’m ’f))
(kibi (amb ’m ’f))
(kibi-self-desc (amb ’m ’f))
(kibi-lied? (amb #t #f)))

(assert
(distinct? (list parent1 parent2)))
(assert
(if (eqv? kibi ’m)

(not kibi-lied?)))
(assert
(if kibi-lied?

(xor
(and (eqv? kibi-self-desc ’m)

(eqv? kibi ’f))
(and (eqv? kibi-self-desc ’f)

(eqv? kibi ’m)))))
(assert
(if (not kibi-lied?)

(xor
(and (eqv? kibi-self-desc ’m)

(eqv? kibi ’m))

8 This puzzle is due to Hunter [19].

61

(and (eqv? kibi-self-desc ’f)
(eqv? kibi ’f)))))

(assert
(if (eqv? parent1 ’m)

(and
(eqv? kibi-self-desc ’m)
(xor
(and (eqv? kibi ’f)

(eqv? kibi-lied? #f))
(and (eqv? kibi ’m)

(eqv? kibi-lied? #t))))))
(assert
(if (eqv? parent1 ’f)

(and
(eqv? kibi ’f)
(eqv? kibi-lied? #t))))

(list parent1 parent2 kibi))))

A note on the helper procedures: The procedure distinct? returns true if all the
elements in its argument list are distinct, and false otherwise. The procedure xor
returns true if only one of its two arguments is true, and false otherwise.

Typing (solve-kalotan-puzzle) will solve the puzzle.

14.4.2 Map coloring

It has been known for some time (but not proven until 1976 [28]) that four colors
suffice to color a terrestrial map — ie, to color the countries so that neighbors are
distinguished. To actually assign the colors is still an undertaking, and the following
program shows how nondeterministic programming can help.

The following program solves the problem of coloring a map of Western Europe.
The problem and a Prolog solution are given in The Art of Prolog [30]. (It is
instructive to compare our solution with the book’s.)

The procedure choose-color nondeterministically returns one of four colors:

(define choose-color
(lambda ()
(amb ’red ’yellow ’blue ’white)))

In our solution, we create for each country a data structure. The data structure
is a 3-element list: The first element of the list is the country’s name; the second
element is its assigned color; and the third element is the colors of its neighbors.
Note we use the initial of the country for its color variable.9 Eg, the list for Belgium
is (list ’belgium b (list f h l g)), because — per the problem statement —
the neighbors of Belgium are France, Holland, Luxembourg, and Germany.

Once we create the lists for each country, we state the (single!) condition they
should satisfy, viz, no country should have the color of its neighbors. In other
words, for every country list, the second element should not be a member of the
third element.

(define color-europe
(lambda ()

;choose colors for each country

9 Spain (Espana) has e so as not to clash with Switzerland.

62

(let ((p (choose-color)) ;Portugal
(e (choose-color)) ;Spain
(f (choose-color)) ;France
(b (choose-color)) ;Belgium
(h (choose-color)) ;Holland
(g (choose-color)) ;Germany
(l (choose-color)) ;Luxemb
(i (choose-color)) ;Italy
(s (choose-color)) ;Switz
(a (choose-color)) ;Austria
)

;construct the adjacency list for
;each country: the 1st element is
;the name of the country; the 2nd
;element is its color; the 3rd
;element is the list of its
;neighbors’ colors
(let ((portugal

(list ’portugal p
(list e)))

(spain
(list ’spain e

(list f p)))
(france
(list ’france f

(list e i s b g l)))
(belgium
(list ’belgium b

(list f h l g)))
(holland
(list ’holland h

(list b g)))
(germany
(list ’germany g

(list f a s h b l)))
(luxembourg
(list ’luxembourg l

(list f b g)))
(italy
(list ’italy i

(list f a s)))
(switzerland
(list ’switzerland s

(list f i a g)))
(austria
(list ’austria a

(list i s g))))
(let ((countries

(list portugal spain
france belgium
holland germany
luxembourg

63

italy switzerland
austria)))

;the color of a country
;should not be the color of
;any of its neighbors
(for-each
(lambda (c)
(assert
(not (memq (cadr c)

(caddr c)))))
countries)

;output the color
;assignment
(for-each
(lambda (c)
(display (car c))
(display " ")
(display (cadr c))
(newline))

countries))))))

Type (color-europe) to get a color assignment.

64

Chapter 15

Engines

An engine [17] represents computation that is subject to timed preemption. In
other words, an engine’s underlying computation is an ordinary thunk that runs as
a timer-preemptable process.

An engine is called with three arguments: (1) a number of time units or ticks,
(2) a success procedure, and (3) a failure procedure. If the engine computation
finishes within the allotted ticks, the success procedure is applied to the computation
result and the remaining ticks. If the engine computation could not finish within
the allotted ticks, the failure procedure is applied to a new engine representing the
unfinished portion of the engine computation.

For example, consider an engine whose underlying computation is a loop that
printed the nonnegative integers in sequence. It is created as follows, with the
soon-to-be-defined make-engine procedure. make-engine is called on an argument
thunk representing the underlying computation, and it returns the corresponding
engine:

(define printn-engine
(make-engine

(lambda ()
(let loop ((i 0))
(display i)
(display " ")
(loop (+ i 1))))))

Here is a call to printn-engine:

(define *more* #f)
(printn-engine 50 list (lambda (ne) (set! *more* ne)))
⇒ 0 1 2 3 4 5 6 7 8 9

Ie, the loop gets to print upto a certain number (here 9) and then fails because
of the clock interrupt. However, our failure procedure sets a global variable called
more to the failed engine, which we can use to resume the loop where the previous
engine left off:

(*more* 50 list (lambda (ne) (set! *more* ne)))
⇒ 10 11 12 13 14 15 16 17 18 19

We will now construct engines using call/cc to capture the unfinished com-
putation of a failing engine. First we will construct flat engines, or engines whose
computation cannot include the running of other engines. We will later general-
ize the code to the more general nestable engines or nesters, which can call other
engines. But in both cases, we need a timer mechanism, or a clock.

15.1 The clock

65

Our engines assume the presence of a global clock or interruptable timer that marks
the passage of ticks as a program executes. We will assume the following clock
interface — if your Scheme provides any kind of alarm mechanism, it should be an
easy matter to rig up a clock of the following type. (Appendix Ddefines a clock for
the Guile [13] dialect of Scheme.)

The internal state of our clock procedure consists of two items:
(1) the number of remaining ticks; and
(2) an interrupt handler to be invoked when the clock runs out of ticks.
clock allows the following operations:
(1) (clock ’set-handler h) sets the interrupt handler to h.
(2) (clock ’set n) resets the clock’s remaining ticks to n, returning the pre-

vious value.
The number of ticks ranges over the non-negative integers and an atom called

infinity. A clock with *infinity* ticks cannot run out of time and so will not
set off the interrupt handler. Such a clock is quiescent or “already stopped”. To
stop a clock, set its ticks to *infinity*.

The clock handler is set to a thunk. For example,

(clock ’set-handler
(lambda ()
(error "Say goodnight, cat!")))

(clock ’set 9)

This will cause an error to be signaled after 9 ticks have passed, and the message
displayed by the signal will be “Say goodnight, cat!”

15.2 Flat engines

We will first set the clock interrupt handler. Note that the handler is invoked
only if a non-quiescent clock runs out of ticks. This happens only during engine
computations that are on the brink of failure, for only engines set the clock.

The handler captures the current continuation, which is the rest of the com-
putation of the currently failing engine. This continuation is sent to another con-
tinuation stored in the global *engine-escape*. The *engine-escape* variable
stores the exit continuation of the current engine. Thus the clock handler captures
the rest of the failing engine and sends it to an exit point in the engine code, so the
requisite failure action can be taken.

(define *engine-escape* #f)
(define *engine-entrance* #f)

(clock ’set-handler
(lambda ()
(call/cc *engine-escape*)))

Let us now look into the innards of the engine code itself. As said, make-engine
takes a thunk and fashions an engine out of it:

(define make-engine
(lambda (th)
(lambda (ticks success failure)
(let* ((ticks-left 0)

(engine-succeeded? #f)
(result

66

(call/cc
(lambda (k)
(set! *engine-escape* k)
(let ((result

(call/cc
(lambda (k)
(set! *engine-entrance* k)
(clock ’set ticks)
(let ((v (th)))
(*engine-entrance* v))))))

(set! ticks-left (clock ’set *infinity*))
(set! engine-succeeded? #t)
result)))))

(if engine-succeeded?
(success result ticks-left)
(failure
(make-engine
(lambda ()
(result ’resume)))))))))

First we introduce the variables ticks-left and engine-succeeded?. The first
will hold the ticks left over should the engine thunk finish in time. The second is a
flag that will be used in the engine code to signal if the engine suceeded.

We then run the engine thunk within two nested calls to call/cc. The first
call/cc captures the continuation to be used by a failing engine to abort out of its
engine computation. This continuation is stored in the global *engine-escape*.
The second call/cc captures an inner continuation that will be used by the return
value of the thunk th if it runs to completion. This continuation is stored in the
global *engine-entrance*.

Running through the code, we find that after capturing the continuations
engine-escape and *engine-entrance*, we set the clock’s ticks to the time
allotted this engine and run the thunk th. If th succeeds, its value v is sent to the
continuation *engine-entrance*, after which the clock is stopped, the remaining
ticks ascertained, and the flag engine-succeeded? is set to true. We now go past
the *engine-escape* continuation, and run the final dispatcher in the code: Since
we know the engine succeeded, we apply the success procedure to the result and
the ticks left.

If the thunk th didn’t finish in time though, it will suffer an interrupt. This
invokes the clock interrupt handler, which captures the current continuation of the
running and now failing thunk and sends it to the continuation *engine-escape*.
This puts the failed-thunk continuation in the outer result variable, and we are
now in the final dispatcher in the code: Since engine-succeeded? is still false, we
apply the failure procedure to new engine fashioned out of result.

Notice that when a failed engine is removed, it will traverse the control path
charted by the first run of the original engine. Nevertheless, because we have
explicitly use the continuations stored in the global variables *engine-entrance*
and *engine-escape*, and we always set them anew before executing an engine
computation, we are assured that the jumps will always come back to the currently
executing engine code.

15.3 Nestable engines

In order to generalize the code above to accommodate the nestable type of engine,

67

we need to incorporate into it some tick management that will take care of the
apportioning of the right amounts of ticks all the engines in a nested run.

To run a new engine (the child), we need to stop the currently engine (the
parent). We then need to assign an appropriate number of ticks to the child. This
may not be the same as the ticks assigned by the program text, because it would
be unfair for a child to consume more ticks than its parent has left. After the child
completes, we need to update the parent’s ticks. If the child finished in time, any
leftover ticks it has revert to the parent. If ticks were denied from the child because
the parent couldn’t afford it, then if the child fails, the parent will fail too, but must
remember to restart the child with its promised ticks when it (the parent) restarts.

We also need to fluid-let the globals *engine-escape* and *engine-entrance*,
because each nested engine must have its own pair of these sentinel continuations.
As an engine exits (whether through success or failure), the fluid-let will ensure
that the next enclosing engine’s sentinels take over.

Combining all this, the code for nestable engines looks as follows:

(define make-engine
(lambda (th)

(lambda (ticks s f)
(let* ((parent-ticks

(clock ’set *infinity*))

;A child can’t have more ticks than its parent’s
;remaining ticks
(child-available-ticks
(clock-min parent-ticks ticks))

;A child’s ticks must be counted against the parent
;too
(parent-ticks-left
(clock-minus parent-ticks child-available-ticks))

;If child was promised more ticks than parent could
;afford, remember how much it was short-changed by
(child-ticks-left
(clock-minus ticks child-available-ticks))

;Used below to store ticks left in clock
;if child completes in time
(ticks-left 0)

(engine-succeeded? #f)

(result
(fluid-let ((*engine-escape* #f)

(*engine-entrance* #f))
(call/cc
(lambda (k)
(set! *engine-escape* k)
(let ((result

(call/cc
(lambda (k)
(set! *engine-entrance* k)
(clock ’set child-available-ticks)

68

(let ((v (th)))

(*engine-entrance* v))))))
(set! ticks-left

(let ((n (clock ’set *infinity*)))
(if (eqv? n *infinity*) 0 n)))

(set! engine-succeeded? #t)
result))))))

;Parent can reclaim ticks that child didn’t need
(set! parent-ticks-left
(clock-plus parent-ticks-left ticks-left))

;This is the true ticks that child has left --
;we include the ticks it was short-changed by
(set! ticks-left
(clock-plus child-ticks-left ticks-left))

;Restart parent with its remaining ticks
(clock ’set parent-ticks-left)
;The rest is now parent computation

(cond
;Child finished in time -- celebrate its success
(engine-succeeded? (s result ticks-left))

;Child failed because it ran out of promised time --
;call failure procedure
((= ticks-left 0)
(f (make-engine (lambda () (result ’resume)))))

;Child failed because parent didn’t have enough time,
;ie, parent failed too. If so, when parent is
;resumed, its first order of duty is to resume the
;child with its fair amount of ticks
(else
((make-engine (lambda () (result ’resume)))
ticks-left s f)))))))

Note that we have used the arithmetic operators clock-min, clock-minus, and
clock-plus instead of min, -, and +. This is because the values used by the clock
arithmetic includes *infinity* in addition to the integers. Some Scheme dialects
provide an *infinity* value in their arithmetic10 — if so, you can use the regular
arithmetic operators. If not, it is an easy exercise to define the enhanced operators.

10 Eg, in Guile, you can (define *infinity* (/ 1 0)).

69

Chapter 16

Shell scripts

It is often convenient to simply write what one wants done into a file or script, and
execute the script as though it were any other operating-system shell command. The
interface to more weighty programs is often provided in the form of a script, and
users frequently build their own scripts or customize existing ones to suit particular
needs. Scripting is arguably the most frequent programming task performed. For
many users, it is the only programming they will ever do.

Operating systems such as Unix and DOS (the command-line interface provided
in Windows) provide such a scripting mechanism, but the scripting language in both
cases is very rudimentary. Often a script is just a sequence or batch of commands
that one would type to the shell prompt. It saves the user from having to type every
one of the shell commands individually each time they require the same or similar
sequence to be performed. Some scripting languages throw in a small amount
of programmability in the form of a conditional and a loop, but that is about
all. This is enough for smallish tasks, but as one’s scripts become bigger and
more demanding, as scripts invariably seem to do, one often feels the need for a
fuller fledged programming language. A Scheme with an adequate operating-system
interface makes scripting easy and maintainable.

This section will describe how to write scripts in Scheme. Since there is wide
variation in the various Scheme dialects on how to accomplish this, we will con-
centrate on the MzScheme dialect, and document in appendix Athe modifications
needed for other dialects. We will also concentrate on the Unix operating system
for the moment; appendix Bwill deal with the DOS counterpart.

16.1 Hello, World!, again

We will now create a Scheme script that says hello to the world. Saying hello is
of course not a demanding scripting problem for traditional scripting languages.
However, understanding how to transcribe it into Scheme will launch us on the
path to more ambitious scripts. First, a conventional Unix hello script is a file, with
contents that look like:

echo Hello, World!

It uses the shell command echo. The script can be named hello, made into
an executable by doing

chmod +x hello

and placed in one of the directories named in the PATH environment variable. There-
after, anytime one types

hello

at the shell prompt, one promptly gets the insufferable greeting.
A Scheme hello script will perform the same output using Scheme (using the

program in sec 1), but we need something in the file to inform the operating system

70

that it needs to construe the commands in the file as Scheme, and not as its default
script language. The Scheme script file, also called hello, looks like:

":"; exec mzscheme -r $0 "$@"

(display "Hello, World!")
(newline))

Everything following the first line is straight Scheme. However, the first line
is the magic that makes this into a script. When the user types hello at the
Unix prompt, Unix will read the file as a regular script. The first thing it sees is
the ":", which is a shell no-op. The ; is the shell command separator. The next
shell command is the exec. exec tells Unix to abandon the current script and
run mzscheme -r $0 "$@" instead, where the parameter $0 will be replaced by the
name of the script, and the parameter "$@" will be replaced by the list of arguments
given by the user to the script. (In this case, there are no such arguments.)

We have now, in effect, transformed the hello shell command into a different
shell command, viz,

mzscheme -r /whereveritis/hello

where /whereveritis/hello is the pathname of hello.
mzscheme calls the MzScheme executable. The -r option tells it to load the

immediately following argument as a Scheme file after collecting any succeeding
arguments into a vector called argv. (In this example, argv will be the null vector.)

Thus, the Scheme script will be run as a Scheme file, and the Scheme forms in
the file will have access to the script’s original arguments via the vector argv.

Now, Scheme has to tackle the first line in the script, which as we’ve already
seen, was really a well-formed, traditional shell script. The ":" is a self-evaluating
string in Scheme and thus harmless. The ‘;’ marks a Scheme comment, and so
the exec ... is safely ignored. The rest of the file is of course straight Scheme,
and the expressions therein are evaluated in sequence. After all of them have been
evaluated, Scheme will exit.

In sum, typing hello at the shell prompt will produce

Hello, World!

and return you to the shell prompt.

16.2 Scripts with arguments

A Scheme script uses the variable argv to refer to its arguments. For example, the
following script echoes all its arguments, each on a line:

":"; exec mzscheme -r $0 "$@"

;Put in argv-count the number of arguments supplied

(define argv-count (vector-length argv))

(let loop ((i 0))
(unless (>= i argv-count)

(display (vector-ref argv i))
(newline)
(loop (+ i 1))))

Let’s call this script echoall. Calling echoall 1 2 3 will display

71

1
2
3

Note that the script name ("echoall") is not included in the argument vector.

16.3 Example

Let’s now tackle a more substantial problem. We need to transfer files from one
computer to another and the only method we have is to use a 3.5” floppy as a ferry.
We need a script split4floppy that will split files larger than 1.44 million bytes
into floppy-sized chunks. The script file split4floppy is as follows:

":";exec mzscheme -r $0 "$@"

;floppy-size = number of bytes that will comfortably fit on a
; 3.5" floppy

(define floppy-size 1440000)

;split splits the bigfile f into the smaller, floppy-sized
;subfiles, viz, subfile-prefix.1, subfile-prefix.2, etc.

(define split
(lambda (f subfile-prefix)
(call-with-input-file f
(lambda (i)
(let loop ((n 1))
(if (copy-floppy-size-chunk i subfile-prefix n)

(loop (+ n 1))))))))

;copy-to-floppy-sized-subfile copies the next 1.44 million
;bytes (if there are less than that many bytes left, it
;copies all of them) from the big file to the nth
;subfile. Returns true if there are bytes left over,
;otherwise returns false.

(define copy-to-floppy-sized-subfile
(lambda (i subfile-prefix n)
(let ((nth-subfile (string-append subfile-prefix "."

(number->string n))))
(if (file-exists? nth-subfile) (delete-file nth-subfile))
(call-with-output-file nth-subfile
(lambda (o)
(let loop ((k 1))
(let ((c (read-char i)))
(cond ((eof-object? c) #f)

(else
(write-char c o)
(if (< k floppy-size)

(loop (+ k 1))
#t))))))))))

;bigfile = script’s first arg

72

; = the file that needs splitting

(define bigfile (vector-ref argv 0))

;subfile-prefix = script’s second arg
; = the basename of the subfiles

(define subfile-prefix (vector-ref argv 1))

;Call split, making subfile-prefix.{1,2,3,...} from
;bigfile

(split bigfile subfile-prefix)

Script split4floppy is called as follows:

split4floppy largefile chunk

This splits largefile into subfiles chunk.1, chunk.2, ..., such that each subfile fits
on a floppy.

After the chunk.i have been ferried over to the target computer, the file large-
file can be retrieved by stringing the chunk.i together. This can be done on Unix
with:

cat chunk.1 chunk.2 ... > largefile

and on DOS with:

copy /b chunk.1+chunk.2+... largefile

73

Chapter 17

CGI scripts

(Warning: CGI scripts without appropriate safeguards can compromise your site’s
security. The scripts presented here are simple examples and are not assured to be
secure for actual Web use.)

CGI scripts [26] are scripts that reside on a web server and can be run by a client
(browser). The client accesses a CGI script by its URL, just as they would a regular
page. The server, recognizing that the URL requested is a CGI script, runs it. How
the server recognizes certain URLs as scripts is up to the server administrator. For
the purposes of this text, we will assume that they are stored in a distinguished
directory called cgi-bin. Thus, the script testcgi.scm on the server www.foo.org
would be accessed as http://www.foo.org/cgi-bin/testcgi.scm.

The server runs the CGI script as the user nobody, who cannot be expected
to have any PATH knowledge (which is highly subjective anyway). Therefore the
introductory magic line for a CGI script written in Scheme needs to be a bit more
explicit than the one we used for ordinary Scheme scripts. Eg, the line

":";exec mzscheme -r $0 "$@"

implicitly assumes that there is a particular shell (bash, say), and that there is
a PATH, and that mzscheme is in it. For CGI scripts, we will need to be more
expansive:

#!/bin/sh
":";exec /usr/local/bin/mzscheme -r $0 "$@"

This gives fully qualified pathnames for the shell and the Scheme executable.
The transfer of control from shell to Scheme proceeds as for regular scripts.

17.1 Example: Displaying environment variables

Here is an example Scheme CGI script, testcgi.scm, that outputs the settings of
some commonly used CGI environment variables. This information is returned as
a new, freshly created, page to the browser. The returned page is simply whatever
the CGI script writes to its standard output. This is how CGI scripts talk back to
whoever called them — by giving them a new page.

Note that the script first outputs the line

content-type: text/plain

followed by a blank line. This is standard ritual for a web server serving up a page.
These two lines aren’t part of what is actually displayed as the page. They are there
to inform the browser that the page being sent is plain (ie, un-marked-up) text, so
the browser can display it appropriately. If we were producing text marked up in
HTML, the content-type would be text/html.

The script testcgi.scm:

74

#!/bin/sh
":";exec /usr/local/bin/mzscheme -r $0 "$@"

;Identify content-type as plain text.

(display "content-type: text/plain") (newline)
(newline)

;Generate a page with the requested info. This is
;done by simply writing to standard output.

(for-each
(lambda (env-var)
(display env-var)
(display " = ")
(display (or (getenv env-var) ""))
(newline))

’("AUTH_TYPE"
"CONTENT_LENGTH"
"CONTENT_TYPE"
"DOCUMENT_ROOT"
"GATEWAY_INTERFACE"
"HTTP_ACCEPT"
"HTTP_REFERER" ; [sic]
"HTTP_USER_AGENT"
"PATH_INFO"
"PATH_TRANSLATED"
"QUERY_STRING"
"REMOTE_ADDR"
"REMOTE_HOST"
"REMOTE_IDENT"
"REMOTE_USER"
"REQUEST_METHOD"
"SCRIPT_NAME"
"SERVER_NAME"
"SERVER_PORT"
"SERVER_PROTOCOL"
"SERVER_SOFTWARE"))

testcgi.scm can be called directly by opening it on a browser. The URL is:

http://www.foo.org/cgi-bin/testcgi.scm

Alternately, testcgi.scm can occur as a link in an HTML file, which you can
click. Eg,

... To view some common CGI environment variables, click
here.
...

However testcgi.scm is launched, it will produce a plain text page containing
the settings of the environment variables. An example output:

AUTH_TYPE =
CONTENT_LENGTH =
CONTENT_TYPE =
DOCUMENT_ROOT = /home/httpd/html

75

GATEWAY_INTERFACE = CGI/1.1
HTTP_ACCEPT = image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

/
HTTP_REFERER =
HTTP_USER_AGENT = Mozilla/3.01Gold (X11; I; Linux 2.0.32 i586)
PATH_INFO =
PATH_TRANSLATED =
QUERY_STRING =
REMOTE_HOST = 127.0.0.1
REMOTE_ADDR = 127.0.0.1
REMOTE_IDENT =
REMOTE_USER =
REQUEST_METHOD = GET
SCRIPT_NAME = /cgi-bin/testcgi.scm
SERVER_NAME = localhost.localdomain
SERVER_PORT = 80
SERVER_PROTOCOL = HTTP/1.0
SERVER_SOFTWARE = Apache/1.2.4

17.2 Example: Displaying selected environment variable

testcgi.scm does not take any input from the user. A more focused script would
take an argument environment variable from the user, and output the setting of
that variable and none else. For this, we need a mechanism for feeding arguments
to CGI scripts. The form tag of HTML provides this capability. Here is a sample
HTML page for this purpose:

<html>
<head>
<title>Form for checking environment variables</title>
</head>
<body>

<form method=get
action="http://www.foo.org/cgi-bin/testcgi2.scm">

Enter environment variable: <input type=text name=envvar size=30>
<p>

<input type=submit>
</form>

</body>
</html>

The user enters the desired environment variable (eg, GATEWAY_INTERFACE) in the
textbox and clicks the submit button. This causes all the information in the form
— here, the setting of the parameter envvar to the value GATEWAY_INTERFACE — to
be collected and sent to the CGI script identified by the form, viz, testcgi2.scm.
The information can be sent in one of two ways: (1) if the form’s method=get (the
default), the information is sent via the environment variable called QUERY_STRING;
(2) if the form’s method=post, the information is available to the CGI script at the
latter’s standard input port (stdin). Our form uses QUERY_STRING.

It is testcgi2.scm’s responsibility to extract the information from QUERY_STRING,
and output the answer page accordingly.

76

The information to the CGI script, whether arriving via an environment vari-
able or through stdin, is formatted as a sequence of parameter/argument pairs.
The pairs are separated from each other by the & character. Within a pair, the pa-
rameter occurs first and is separated from the argument by the = character. In this
case, there is only one parameter/argument pair, viz, envvar=GATEWAY_INTERFACE.

The script testcgi2.scm:

#!/bin/sh
":";exec /usr/local/bin/mzscheme -r $0 "$@"

(display "content-type: text/plain") (newline)
(newline)

;string-index returns the leftmost index in string s
;that has character c

(define string-index
(lambda (s c)
(let ((n (string-length s)))
(let loop ((i 0))
(cond ((>= i n) #f)

((char=? (string-ref s i) c) i)
(else (loop (+ i 1))))))))

;split breaks string s into substrings separated by character c

(define split
(lambda (c s)
(let loop ((s s))
(if (string=? s "") ’()

(let ((i (string-index s c)))
(if i (cons (substring s 0 i)

(loop (substring s (+ i 1)
(string-length s))))

(list s)))))))

(define args
(map (lambda (par-arg)

(split #\= par-arg))
(split #\& (getenv "QUERY_STRING"))))

(define envvar (cadr (assoc "envvar" args)))

(display envvar)
(display " = ")
(display (getenv envvar))

(newline)

Note the use of a helper procedure split to split the QUERY_STRING into param-
eter/argument pairs along the & character, and then splitting parameter and ar-
gument along the = character. (If we had used the post method rather than get,
we would have needed to extract the parameters and arguments from the standard
input.)

The <input type=text> and <input type=submit> are but two of the many

77

different input tags possible in an HTML form. Consult [26] for the full repertoire.

17.3 CGI script utilities

In the example above, the parameter’s name or the argument it assumed did not
themselves contain any ‘&’ or ‘=’ characters. In general, they may. To accom-
modate such characters, and not have them be mistaken for separators, the CGI
argument-passing mechanism treats all characters other than letters, digits, and the
underscore, as special, and transmits them in an encoded form. A space is encoded
as a ‘+’. For other special characters, the encoding is a three-character sequence,
and consists of ‘%’ followed the special character’s hexadecimal code. Thus, the
character sequence ‘20% + 30% = 50%, &c.’ will be encoded as

20%25+%2b+30%25+%3d+50%25%2c+%26c%2e

(Space become ‘+’; ‘%’ becomes ‘%25’; ‘+’ becomes ‘%2b’; ‘=’ becomes ‘%3d’; ‘,’
becomes ‘%2c’; ‘&’ becomes ‘%26’; and ‘.’ becomes ‘%2e’.)

Instead of dealing anew with the task of getting and decoding the form data
in each CGI script, it is convenient to collect some helpful procedures into a library
file cgi.scm. testcgi2.scm can then be written more compactly as

#!/bin/sh
":";exec /usr/local/bin/mzscheme -r $0 "$@"

;Load the cgi utilities

(load-relatve "cgi.scm")

(display "content-type: text/plain") (newline)
(newline)

;Read the data input via the form

(parse-form-data)

;Get the envvar parameter

(define envvar (form-data-get/1 "envvar"))

;Display the value of the envvar

(display envvar)
(display " = ")
(display (getenv envvar))
(newline)

This shorter CGI script uses two utility procedures defined in cgi.scm. parse-
form-data to read the data supplied by the user via the form. The data consists of
parameters and their associated values. form-data-get/1 finds the value associated
with a particular parameter.

cgi.scm defines a global table called *form-data-table* to store form data.

;Load our table definitions

(load-relative "table.scm")

78

;Define the *form-data-table*

(define *form-data-table* (make-table ’equ string=?))

An advantage of using a general mechanism such as the parse-form-data procedure
is that we can hide the details of what method (get or put) was used.

(define parse-form-data
(lambda ()
((if (string-ci=? (or (getenv "REQUEST_METHOD") "GET") "GET")

parse-form-data-using-query-string
parse-form-data-using-stdin))))

The environment variable REQUEST_METHOD tells which method was used to transmit
the form data. If the method is GET, then the form data was sent as the string
available via another environment variable, QUERY_STRING. The auxiliary procedure
parse-form-data-using-query-string is used to pick apart QUERY_STRING:

(define parse-form-data-using-query-string
(lambda ()
(let ((query-string (or (getenv "QUERY_STRING") "")))
(for-each
(lambda (par=arg)

(let ((par/arg (split #\= par=arg)))
(let ((par (url-decode (car par/arg)))

(arg (url-decode (cadr par/arg))))
(table-put!
form-data-table par
(cons arg

(table-get *form-data-table* par ’()))))))
(split #\& query-string)))))

The helper procedure split, and its helper string-index, are defined as in sec 17.2.
As noted, the incoming form data is a sequence of name-value pairs separated by
&s. Within each pair, the name comes first, followed by an = character, followed
by the value. Each name-value combination is collected into a global table, the
form-data-table.
Both name and value are encoded, so we need to decode them using the url-decode
procedure to get their actual representation.

(define url-decode
(lambda (s)
(let ((s (string->list s)))

(list->string
(let loop ((s s))
(if (null? s) ’()

(let ((a (car s)) (d (cdr s)))
(case a
((#\+) (cons #\space (loop d)))
((#\%) (cons (hex->char (car d) (cadr d))

(loop (cddr d))))
(else (cons a (loop d)))))))))))

‘+’ is converted into space. A triliteral of the form ‘%xy’ is converted, using the
procedure hex->char into the character whose ascii encoding is the hex number
‘xy’.

79

(define hex->char
(lambda (x y)
(integer->char
(string->number (string x y) 16))))

We still need a form-data parser for the case where the request method is POST.
The auxiliary procedure parse-form-data-using-stdin does this.

(define parse-form-data-using-stdin
(lambda ()
(let* ((content-length (getenv "CONTENT_LENGTH"))

(content-length
(if content-length

(string->number content-length) 0))
(i 0))

(let par-loop ((par ’()))
(let ((c (read-char)))
(set! i (+ i 1))
(if (or (> i content-length)

(eof-object? c) (char=? c #\=))
(let arg-loop ((arg ’()))
(let ((c (read-char)))
(set! i (+ i 1))
(if (or (> i content-length)

(eof-object? c) (char=? c #\&))
(let ((par (url-decode

(list->string
(reverse! par))))

(arg (url-decode
(list->string
(reverse! arg)))))

(table-put! *form-data-table* par
(cons arg (table-get *form-data-table*

par ’())))
(unless (or (> i content-length)

(eof-object? c))
(par-loop ’())))

(arg-loop (cons c arg)))))
(par-loop (cons c par))))))))

The POST method sends form data via the script’s stdin. The number of characters
sent is placed in the environment variable CONTENT_LENGTH. parse-form-data-
using-stdin reads the required number of characters from stdin, and populates
the *form-data-table* as before, making sure to decode the parameters’ names
and values.

It remains to retrieve the values for specific parameters from the *form-data-
table*. Note that the table associates a list with each parameter, in order to
accommodate the possibility of multiple values for a parameter. form-data-get
retrieves all the values assigned to a parameter. If there is only one value, it returns
a singleton containing that value.

(define form-data-get
(lambda (k)
(table-get *form-data-table* k ’())))

form-data-get/1 returns the first (or most significant) value associated with a
parameter.

80

(define form-data-get/1
(lambda (k . default)
(let ((vv (form-data-get k)))
(cond ((pair? vv) (car vv))

((pair? default) (car default))
(else "")))))

In our examples so far, the CGI script has generated plain text. Generally, though,
we will want to generate an HTML page. It is not uncommon for a combination of
HTML form and CGI script to trigger a series of HTML pages with forms. It is also
common to code all the action corresponding to these various forms in a single CGI
script. In any case, it is helpful to have a utility procedure that writes out strings
in HTML format, ie, with the HTML special characters encoded appropriately:

(define display-html
(lambda (s . o)

(let ((o (if (null? o) (current-output-port)
(car o))))

(let ((n (string-length s)))
(let loop ((i 0))
(unless (>= i n)
(let ((c (string-ref s i)))
(display
(case c
((#\<) "<")
((#\>) ">")
((#\") """)
((#\&) "&")
(else c)) o)

(loop (+ i 1)))))))))

17.4 A calculator via CGI

Here is an CGI calculator script, cgicalc.scm, that exploits Scheme’s arbitrary-
precision arithmetic.

#!/bin/sh
":";exec /usr/local/bin/mzscheme -r $0

;Load the CGI utilities
(load-relative "cgi.scm")

(define uhoh #f)

(define calc-eval
(lambda (e)
(if (pair? e)

(apply (ensure-operator (car e))
(map calc-eval (cdr e)))

(ensure-number e))))

(define ensure-operator
(lambda (e)
(case e

81

((+) +)
((-) -)
((*) *)
((/) /)
((**) expt)
(else (uhoh "unpermitted operator")))))

(define ensure-number
(lambda (e)
(if (number? e) e

(uhoh "non-number"))))

(define print-form
(lambda ()
(display "<form action=\"")
(display (getenv "SCRIPT_NAME"))
(display "\">

Enter arithmetic expression:

<input type=textarea name=arithexp><p>
<input type=submit value=\"Evaluate\">
<input type=reset value=\"Clear\">

</form>")))

(define print-page-begin
(lambda ()
(display "content-type: text/html

<html>
<head>
<title>A Scheme Calculator</title>

</head>
<body>")))

(define print-page-end
(lambda ()
(display "</body>

</html>")))

(parse-form-data)

(print-page-begin)

(let ((e (form-data-get "arithexp")))
(unless (null? e)
(let ((e1 (car e)))
(display-html e1)
(display "<p>

=> ")
(display-html
(call/cc
(lambda (k)
(set! uhoh

(lambda (s)

82

(k (string-append "Error: " s))))
(number->string
(calc-eval (read (open-input-string (car e))))))))

(display "<p>"))))

(print-form)
(print-page-end)

83

Appendix A

Scheme dialects

All major Scheme dialects implement the R5RS specification [22]. By using only
the features documented in the R5RS, one can write Scheme code that is portable
across the dialects. However, the R5RS, either for want of consensus or because of
inevitable system dependencies, remains silent on several matters that non-trivial
programming cannot ignore. The various dialects have therefore had to solve these
matters in a non-standard and idiosyncratic manner.

This book uses the MzScheme [9] dialect of Scheme, and thereby uses sev-
eral features that are nonstandard. The complete list of the dialect-dependent
features used in this book is: the command-line (both for opening a listener ses-
sion and for shell scripts), define-macro, delete-file, file-exists?, file-or-
directory-modify-seconds, fluid-let, gensym, getenv, get-output-string,
load-relative, open-input-string, open-output-string, read-line, reverse!,
system, unless and when.

All but two of these are present in the default environment of MzScheme.
The missing two, define-macro and system, are provided in standard MzScheme
libraries, which can be explicitly loaded into MzScheme using the forms:

(require (lib "defmacro.ss")) ;provides define-macro
(require (lib "process.ss")) ;provides system

A good place to place these forms is the MzScheme initialization file, which is the
file .mzschemerc in the user’s home directory.
Some of the nonstandard features (eg, file-exists?, delete-file) are in fact
de facto standards and are present in many Schemes. Some other features (eg,
when, unless) have more or less “plug-in” definitions (given in this book) that can
be loaded into any Scheme dialect that doesn’t have them primitively. The rest
require a dialect-specific definition (eg, load-relative).

This chapter describes how to incorporate into your Scheme dialect the non-
standard features used in this book. For further detail about your Scheme dialect,
consult the documentation provided by its implementor (appendix E).

A.1 Invocation

To invoke the Guile [13] listener, type guile. To invoke SCM [20], type scm.
To invoke STk [14], type snow. This is the “no window” executable, which is

enough for the purposes of this book.

A.2 Init files

Like Mzscheme, many Scheme dialects load, if available, an initialization file (or
init file), usually supplied in the user’s home directory. The init file is a convenient
location in which to place definitions for nonstandard features. Eg, the nonstandard

84

procedure file-or-directory-modify-seconds can be added to the Guile dialect
of Scheme by putting the following code in Guile’s init file, which is ~/.guile:

(define file-or-directory-modify-seconds
(lambda (f)
(vector-ref (stat f) 9)))

The init files for SCM and STk are ~/ScmInit.scm and ~/.stkrc respectively.

A.3 Shell scripts

The initial line for a shell script written in Guile is:

":";exec guile -s $0 "$@"

In the script, the procedure-call (command-line) returns the list of the script’s
name and arguments. To access just the arguments, take the cdr of this list.

A shell script written in SCM starts out as:

":";exec scm -l $0 "$@"

In the script, the variable *argv* contains the list of the Scheme executable
name, the script’s name, the option -l, and the script’s arguments. To access just
the arguments, take the cdddr of this list.

STk shell scripts start out as:

":";exec snow -f $0 "$@"

In the script, the variable *argv* contains the list of the script’s arguments.

A.4 define-macro

The define-macro used in the text occurs in the Scheme dialects Bigloo [29], Gam-
bit [6], Guile, MzScheme and Pocket Scheme [15]. There are minor variations in
how macros are defined in the other Scheme dialects. The rest of this section will
point out how these other dialects notate the following code fragment:

(define-macro MACRO-NAME
(lambda MACRO-ARGS

MACRO-BODY ...))

In MIT Scheme [25], this is written as:

(syntax-table-define system-global-syntax-table ’MACRO-NAME
(macro MACRO-ARGS

MACRO-BODY ...))

In SCM and Kawa [3]:

(defmacro MACRO-NAME MACRO-ARGS
MACRO-BODY ...)

In STk:

(define-macro (MACRO-NAME . MACRO-ARGS)
MACRO-BODY ...)

A.5 load-relative

The procedure load-relative may be defined for Guile as follows:

85

(define load-relative
(lambda (f)
(let* ((n (string-length f))

(full-pathname?
(and (> n 0)

(let ((c0 (string-ref f 0)))
(or (char=? c0 #\/)

(char=? c0 #\~))))))
(basic-load
(if full-pathname? f

(let ((clp (current-load-port)))
(if clp

(string-append
(dirname (port-filename clp)) "/" f)

f)))))))

For SCM:

(define load-relative
(lambda (f)
(let* ((n (string-length f))

(full-pathname?
(and (> n 0)

(let ((c0 (string-ref f 0)))
(or (char=? c0 #\/)

(char=? c0 #\~))))))
(load (if (and *load-pathname* full-pathname?)

(in-vicinity (program-vicinity) f)
f)))))

For STk, the following definition for load-relative works only if you discipline
yourself to not use load:

(define *load-pathname* #f)

(define stk%load load)

(define load-relative
(lambda (f)
(fluid-let ((*load-pathname*

(if (not *load-pathname*) f
(let* ((n (string-length f))

(full-pathname?
(and (> n 0)

(let ((c0 (string-ref f 0)))
(or (char=? c0 #\/)

(char=? c0 #\~))))))
(if full-pathname? f

(string-append
(dirname *load-pathname*)
"/" f))))))

(stk%load *load-pathname*))))

(define load
(lambda (f)

(error "Don’t use load. Use load-relative instead.")))

86

Appendix B

DOS batch files in Scheme

DOS shell scripts are known as batch files. A conventional DOS batch file that
outputs “Hello, World!” has the following contents:

echo Hello, World!

It uses the DOS command echo. The batch file is named hello.bat, which
identifies it to the operating system as an executable. It may then be placed in one
of the directories on the PATH environment variable. Thereafter, anytime one types

hello.bat

or simply

hello

at the DOS prompt, one promptly gets the insufferable greeting.
A Scheme version of the hello batch file will perform the same output using

Scheme, but we need something in the file to inform DOS that it needs to construe
the commands in the file as Scheme, and not as its default batch language. The
Scheme batch file, also called hello.bat, looks like:

;@echo off
;goto :start
#|
:start
echo. > c:_temp.scm
echo (load (find-executable-path "hello.bat" >> c:_temp.scm
echo "hello.bat")) >> c:_temp.scm
mzscheme -r c:_temp.scm %1 %2 %3 %4 %5 %6 %7 %8 %9
goto :eof
|#

(display "Hello, World!")
(newline)

;:eof

The lines upto |# are standard DOS batch. Then follows the Scheme code for
the greeting. Finally, there is one more standard DOS batch line, viz, ;:eof.

When the user types hello at the DOS prompt, DOS reads and runs the file
hello.bat as a regular batch file. The first line, ;@echo off, turns off the echoing
of the commands run — as we don’t want excessive verbiage clouding the effect of
our script. The second line, ;goto :start, causes execution to jump forward to
the line labeled :start, ie, the fourth line. The three ensuing echo lines create a
temporary Scheme file called c:_temp.tmp with the following contents:

(load (find-executable-path "hello.bat" "hello.bat"))

87

The next batch command is a call to MzScheme. The -r option loads the
Scheme file c:_temp.scm. All the arguments (in this example, none) will be avail-
able to Scheme in the vector argv. This call to Scheme will evaluate our Scheme
script, as we will see below. After Scheme returns, we still need to ensure that the
batch file winds up cleanly. The next batch command is goto :eof, which causes
control to skirt all the Scheme code and go to the very end of the file, which contains
the label ;:eof. The script thus ends.

Now we can see how the call to Scheme does its part, viz, to run the Scheme
expressions embedded in the batch file. Loading c:_temp.scm will cause Scheme
to deduce the full pathname of the file hello.bat (using find-executable-path),
and to then load hello.bat.

Thus, the Scheme script file will now be run as a Scheme file, and the Scheme
forms in the file will have access to the script’s original arguments via the vector
argv.

Now, Scheme has to skirt the batch commands in the script. This is easily done
because these batch commands are either prefixed with a semicolon or are enclosed
in #| ... |#, making them Scheme comments.

The rest of the file is of course straight Scheme, and the expressions therein
are evaluated in sequence. (The final expression, ;:eof, is a Scheme comment, and
causes no harm.) After all the expressions have been evaluated, Scheme will exit.

In sum, typing hello at the DOS prompt will produce

Hello, World!

and return you to the DOS prompt.

88

Appendix C

Numerical techniques

Recursion (including iteration) combines well with Scheme’s mathematical primi-
tive procedures to implement various numerical techniques. As an example, let’s
implement Simpson’s rule, a procedure for finding an approximation for a definite
integral.

C.1 Simpson’s rule

The definite integral of a function f(x) within an interval of integration [a, b] can
be viewed as the area under the curve representing f(x) from the lower limit x = a
to the upper limit x = b. In other words, we consider the graph of the curve for
f(x) on the x, y-plane, and find the area enclosed between that curve, the x-axis,
and the ordinates of f(x) at x = a and x = b.

According to Simpson’s rule, we divide the interval of integration [a, b] into n
evenly spaced intervals, where n is even. The length of each interval is therefore
h = (b− a)/n. (The larger n is, the better the approximation.) We then calculate
the ordinates of f(x) at the interval boundaries. There are n+1 such ordinates, viz,
y0, . . . , yn, where we identify y0 with f(a) and yn with f(b). Thus, y1 = f(a+ h),
y2 = f(a + 2h), and in general, yk = f(a + kh). Simpson’s rule approximates the
definite integral of f(x) between a and b with the value11:

h

3
[(y0 + yn) + 4(y1 + y3 + · · ·+ yn−1) + 2(y2 + y4 + · · ·+ yn−2)]

We define the procedure integrate-simpson to take four arguments: the integrand
f; the x-values at the limits a and b; and the number of intervals n.

(define integrate-simpson
(lambda (f a b n)
;...

The first thing we do in integrate-simpson’s body is ensure that n is even — if it
isn’t, we simply bump its value by 1.

;...
(unless (even? n) (set! n (+ n 1)))
;...

Next, we put in the local variable h the length of the interval. We introduce two
more local variables h*2 and n/2 to store the values of twice h and half n respectively,
as we expect to use these values often in the ensuing calculations.

;...
(let* ((h (/ (- b a) n))

11 Consult any elementary text on the calculus for an explanation of why this
approximation is reasonable.

89

(h*2 (* h 2))
(n/2 (/ n 2))
;...

We note that the sums y1 + y3 + · · ·+ yn−1 and y2 + y4 + · · ·+ yn−2 both involve
adding every other ordinate. So let’s define a local procedure sum-every-other-
ordinate-starting-from that captures this common iteration. By abstracting
this iteration into a procedure, we avoid having to repeat the iteration textually.
This not only reduces clutter, but reduces the chance of error, since we have only
one textual occurrence of the iteration to debug.

sum-every-other-ordinate-starting-from takes two arguments: the start-
ing ordinate and the number of ordinates to be summed.

;...
(sum-every-other-ordinate-starting-from

(lambda (x0 num-ordinates)
(let loop ((x x0) (i 0) (r 0))
(if (>= i num-ordinates) r

(loop (+ x h*2)
(+ i 1)
(+ r (f x)))))))

;...

We can now calculate the three ordinate sums, and combine them to produce the
final answer. Note that there are n/2 terms in y1 + y3 + · · ·+ yn−1, and (n/2)− 1
terms in y2 + y4 + · · ·+ yn−2.

;...
(y0+yn (+ (f a) (f b)))
(y1+y3+...+y.n-1
(sum-every-other-ordinate-starting-from
(+ a h) n/2))

(y2+y4+...+y.n-2
(sum-every-other-ordinate-starting-from
(+ a h*2) (- n/2 1))))

(* 1/3 h
(+ y0+yn

(* 4.0 y1+y3+...+y.n-1)
(* 2.0 y2+y4+...+y.n-2))))))

Let’s use integrate-simpson to find the definite integral of the function

φ(x) =
1√
2π
e−x

2/2

We first define φ in Scheme’s prefix notation.12

(define *pi* (* 4 (atan 1)))

(define phi
(lambda (x)
(* (/ 1 (sqrt (* 2 *pi*)))

(exp (- (* 1/2 (* x x)))))))

12 φ is the probability density of a random variable with a normal or Gaussian
distribution, with mean = 0 and standard deviation = 1. The definite integral∫ z

0
φ(x)dx is the probability that the random variable assumes a value between 0

and z. However, you don’t need to know all this in order to understand the example!

90

Note that we exploit the fact that tan−1 1 = π/4 in order to define *pi*.13

The following calls calculate the definite integrals of phi from 0 to 1, 2, and 3
respectively. They all use 10 intervals.

(integrate-simpson phi 0 1 10)
(integrate-simpson phi 0 2 10)
(integrate-simpson phi 0 3 10)

To four decimal places, these values should be 0.3413, 0.4772, and 0.4987 respec-
tively [2, Table 26.1]. Check to see that our implementation of Simpson’s rule does
indeed produce comparable values!14

C.2 Adaptive interval sizes

It is not always convenient to specify the number n of intervals. A number that is
good enough for one integrand may be woefully inadequate for another. In such
cases, it is better to specify the amount of tolerance e we are willing to grant the final
answer, and let the program figure out how many intervals are needed. A typical
way to accomplish this is to have the program try increasingly better answers by
steadily increasing n, and stop when two successive sums differ within e. Thus:

(define integrate-adaptive-simpson-first-try
(lambda (f a b e)
(let loop ((n 4)

(iprev (integrate-simpson f a b 2)))
(let ((icurr (integrate-simpson f a b n)))
(if (<= (abs (- icurr iprev)) e)

icurr
(loop (+ n 2)))))))

Here we calculate successive Simpson integrals (using our original procedure integrate-
simpson) for n = 2, 4, (Remember that n must be even.) When the integral
icurr for the current n differs within e from the integral iprev for the immediately
preceding n, we return icurr.

One problem with this approach is that we don’t take into account that only
some segments of the function benefit from the addition of intervals. For the other
segments, the addition of intervals merely increases the computation without con-
tributing to a better overall answer. For an improved adaptation, we could split
the integral into adjacent segments, and improve each segment separately.

(define integrate-adaptive-simpson-second-try
(lambda (f a b e)
(let integrate-segment ((a a) (b b) (e e))
(let ((i2 (integrate-simpson f a b 2))

(i4 (integrate-simpson f a b 4)))
(if (<= (abs (- i2 i4)) e)

i4
(let ((c (/ (+ a b) 2))

(e (/ e 2)))

13 If Scheme didn’t have the atan procedure, we could use our numerical-integration
procedure to get an approximation for

∫ 1

0
(1 + x2)−1dx, which is π/4.

14 By pulling constant factors — such as (/ 1 (sqrt (* 2 *pi*))) in phi —
out of the integrand, we could speed up the ordinate calculations within integrate-
simpson.

91

(+ (integrate-segment a c e)
(integrate-segment c b e))))))))

The initial segment is from a to b. To find the integral for a segment, we calculate
the Simpson integrals i2 and i4 with the two smallest interval numbers 2 and 4. If
these are within e of each other, we return i4. If not we split the segment in half,
recursively calculate the integral separately for each segment, and add. In general,
different segments at the same level converge at their own pace. Note that when
we integrate a half of a segment, we take care to also halve the tolerance, so that
the precision of the eventual sum does not decay.

There are still some inefficiencies in this procedure: The integral i4 recalculates
three ordinates already determined by i2, and the integral of each half-segment
recalculates three ordinates already determined by i2 and i4. We avoid these
inefficiencies by making explicit the sums used for i2 and i4, and by transmitting
more parameters in the named-let integrate-segment. This makes for more
sharing, both within the body of integrate-segment and across successive calls to
integrate-segment:

(define integrate-adaptive-simpson
(lambda (f a b e)
(let* ((h (/ (- b a) 4))

(mid.a.b (+ a (* 2 h))))
(let integrate-segment ((x0 a)

(x2 mid.a.b)
(x4 b)
(y0 (f a))
(y2 (f mid.a.b))
(y4 (f b))
(h h)
(e e))

(let* ((x1 (+ x0 h))
(x3 (+ x2 h))
(y1 (f x1))
(y3 (f x3))
(i2 (* 2/3 h (+ y0 y4 (* 4.0 y2))))
(i4 (* 1/3 h (+ y0 y4 (* 4.0 (+ y1 y3))

(* 2.0 y2)))))
(if (<= (abs (- i2 i4)) e)

i4
(let ((h (/ h 2)) (e (/ e 2)))
(+ (integrate-segment

x0 x1 x2 y0 y1 y2 h e)
(integrate-segment
x2 x3 x4 y2 y3 y4 h e)))))))))

integrate-segment now explicitly sets four intervals of size h, giving five ordinates
y0, y1, y2, y3, and y4. The integral i4 uses all of these ordinates, while the integral
i2 uses just y0, y2, and y4, with an interval size of twice h. It is easy to verify that
the explicit sums used for i2 and i4 do correspond to Simpson sums.

Compare the following approximations of
∫ 20

0
exdx:

(integrate-simpson exp 0 20 10)
(integrate-simpson exp 0 20 20)
(integrate-simpson exp 0 20 40)
(integrate-adaptive-simpson exp 0 20 .001)
(- (exp 20) 1)

92

The last one is the analytically correct answer. See if you can figure out the smallest
n (overshooting is expensive!) such that (integrate-simpson exp 0 20 n) yields
a result comparable to that returned by the integrate-adaptive-simpson call.

C.3 Improper integrals

Simpson’s rule cannot be directly applied to improper integrals (integrals such that
either the value of the integrand is unbounded somewhere within the interval of
integration, or the interval of integration is itself unbounded). However, the rule
can still be applied for a part of the integral, with the remaining being approximated
by other means. For example, consider the Γ function. For n > 0, Γ(n) is defined
as the following integral with unbounded upper limit:

Γ(n) =
∫ ∞

0

xn−1e−xdx

From this, it follows that (a) Γ(1) = 1, and (b) for n > 0, Γ(n+ 1) = nΓ(n). This
implies that if we know the value of Γ in the interval (1, 2), we can find Γ(n) for any
real n > 0. Indeed, if we relax the condition n > 0, we can use result (b) to extend
the domain of Γ(n) to include n ≤ 0, with the understanding that the function will
diverge for integer n ≤ 0.15

We first implement a Scheme procedure gamma-1-to-2 that requires its argu-
ment n to be within the interval (1, 2). gamma-1-to-2 takes a second argument e
for the tolerance.

(define gamma-1-to-2
(lambda (n e)
(unless (< 1 n 2)
(error ’gamma-1-to-2 "argument outside (1, 2)"))

;...

We introduce a local variable gamma-integrand to hold the Γ-integrand g(x) =
xn−1ex:

;...
(let ((gamma-integrand

(let ((n-1 (- n 1)))
(lambda (x)
(* (expt x n-1)

(exp (- x))))))
;...

We now need to integrate g(x) from 0 to ∞. Clearly we cannot deal with an
infinite number of intervals; we therefore use Simpson’s rule for only a portion of
the interval [0,∞), say [0, xc] (c for “cut-off”). For the remaining, “tail”, interval
[xc,∞), we use a tail-integrand t(x) that reasonably approximates g(x), but has
the advantage of being more tractable to analytic solution. Indeed, it is easy to see
that for sufficiently large xc, we can replace g(x) by an exponential decay function
t(x) = yce

−(x−xc), where yc = g(xc). Thus:∫ ∞
0

g(x)dx ≈
∫ xc

0

g(x)dx+
∫ ∞
xc

t(x)dx

15 Γ(n) for real n > 0 is itself an extension of the “decrement-then-factorial”
function that maps integer n > 0 to (n− 1)!.

93

The first integral can be solved using Simpson’s rule, and the second integral is
just yc. To find xc, we start with a low-ball value (say 4), and then refine it by
successively doubling it until the ordinate at 2xc (ie, g(2xc)) is within a certain
tolerance of the ordinate predicted by the tail-integrand (ie, t(2xc)). For both the
Simpson integral and the tail-integrand calculation, we will require a tolerance of
e/100, an order of 2 less than the given tolerance e, so the overall tolerance is not
affected:

;...
(e/100 (/ e 100)))

(let loop ((xc 4) (yc (gamma-integrand 4)))
(let* ((tail-integrand

(lambda (x)
(* yc (exp (- (- x xc))))))

(x1 (* 2 xc))
(y1 (gamma-integrand x1))
(y1-estimated (tail-integrand x1)))

(if (<= (abs (- y1 y1-estimated)) e/100)
(+ (integrate-adaptive-simpson

gamma-integrand
0 xc e/100)

yc)
(loop x1 y1)))))))

We can now write a more general procedure gamma that returns Γ(n) for any real
n:

(define gamma
(lambda (n e)

(cond ((< n 1) (/ (gamma (+ n 1) e) n))
((= n 1) 1)
((< 1 n 2) (gamma-1-to-2 n e))
(else (let ((n-1 (- n 1)))

(* n-1 (gamma n-1 e)))))))

Let us now calculate Γ(3/2).

(gamma 3/2 .001)
(* 1/2 (sqrt *pi*))

The second value is the analytically correct answer. (This is because Γ(3/2) =
(1/2)Γ(1/2), and Γ(1/2) is known to be

√
π.) You can modify gamma’s second

argument (the tolerance) to get as close an approximation as you desire.

94

Appendix D

A clock for infinity

The Guile [13] procedure alarm provides an interruptable timer mechanism. The
user can set or reset the alarm for some time units, or stop it. When the alarm’s
timer runs out of this time, it will set off an alarm, whose consequences are user-
settable. Guile’s alarm is not quite the clock of sec 15.1, but we can modify it easily
enough.

The alarm’s timer is initially stopped or quiescent, ie, it will not set off an alarm
even as time goes by. To set the alarm’s time-to-alarm to be n seconds, where n
is not 0, run (alarm n). If the timer was already set (but has not yet set off an
alarm), the (alarm n) procedure call will return the number of seconds remaining
from the previous alarm setting. If there is no previous alarm setting, (alarm n)
returns 0.

The procedure call (alarm 0) stops the alarm’s timer, ie, the countdown of
time is stopped, the timer becomes quiescent and no alarm will go off. (alarm 0)
also returns the seconds remaining from a previous alarm setting, if any.

By default, when the alarm’s countdown reaches 0, Guile will display a mes-
sage on the console and exit. More useful behavior can be obtained by using the
procedure sigaction, as follows:

(sigaction SIGALRM
(lambda (sig)
(display "Signal ")
(display sig)
(display " raised. Continuing...")
(newline)))

The first argument SIGALRM (which happens to be 14) identifies to sigaction that
it is the alarm handler that needs setting.16 The second argument is a unary alarm-
handling procedure of the user’s choice. In this example, when the alarm goes off,
the handler displays "Signal 14 raised. Continuing..." on the console without
exiting Scheme. (The 14 is the SIGALRM value that the alarm will pass to its handler.
Don’t worry about it now.)

From our point of view, this simple timer mechanism poses one problem. A
return value of 0 from a call to the procedure alarm is ambiguous: It could either
mean that the alarm was quiescent, or that it was just about to run out of time.
We could resolve this ambiguity if we could include “*infinity*” in the alarm
arithmetic. In other words, we would like a clock that works almost like alarm,
except that a quiescent clock is one with *infinity* seconds. This will make
many things natural, viz,

(1) (clock n) on a quiescent clock returns *infinity*, not 0.
(2) To stop the clock, call (clock *infinity*), not (clock 0).
(3) (clock 0) is equivalent to setting the clock to an infinitesimally small

amount of time, viz, to cause it to raise an alarm instantaneously.

16 There are other signals with their corresponding handlers, and sigaction can
be used to set these as well.

95

In Guile, we can define *infinity* as the following “number”:

(define *infinity* (/ 1 0))

We can define clock in terms of alarm.

(define clock
(let ((stopped? #t)

(clock-interrupt-handler
(lambda () (error "Clock interrupt!"))))

(let ((generate-clock-interrupt
(lambda ()
(set! stopped? #t)
(clock-interrupt-handler))))

(sigaction SIGALRM
(lambda (sig) (generate-clock-interrupt)))

(lambda (msg val)
(case msg
((set-handler)
(set! clock-interrupt-handler val))
((set)
(cond ((= val *infinity*)

;This is equivalent to stopping the clock.
;This is almost equivalent to (alarm 0), except
;that if the clock is already stopped,
;return *infinity*.

(let ((time-remaining (alarm 0)))
(if stopped? *infinity*

(begin (set! stopped? #t)
time-remaining))))

((= val 0)
;This is equivalent to setting the alarm to
;go off immediately. This is almost equivalent
;to (alarm 0), except you force the alarm
;handler to run.

(let ((time-remaining (alarm 0)))
(if stopped?

(begin (generate-clock-interrupt)
infinity)

(begin (generate-clock-interrupt)
time-remaining))))

(else
;This is equivalent to (alarm n) for n != 0.
;Just remember to return *infinity* if the
;clock was previously quiescent.

(let ((time-remaining (alarm val)))
(if stopped?

(begin (set! stopped? #f) *infinity*)
time-remaining))))))))))

The clock procedure uses three internal state variables:

96

(1) stopped?, to describe if the clock is stopped;
(2) clock-interrupt-handler, which is a thunk describing the user-specified

part of the alarm-handling action; and
(3) generate-clock-interrupt, another thunk which will set stopped? to

false before running the user-specified alarm handler.
The clock procedure takes two arguments. If the first argument is set-

handler, it uses the second argument as the alarm handler.
If the first argument is set, it sets the time-to-alarm to the second argument,

returning the time remaining from a previous setting. The code treats 0, *infin-
ity* and other values for time differently so that the user gets a mathematically
transparent interface to alarm.

97

Appendix E

References

[1] Harold Abelson and Gerald Jay Sussman with Julie Sussman. Structure and
Interpretation of Computer Programs (“SICP”) (http://mitpress.mit.edu/
sicp/full-text/book/book.html). MIT Press, 2nd edition, 1996.

[2] Milton Abramowitz and Irene A Stegun, editors. Handbook of Mathematical
Functions: with Formulas, Graphs, and Mathematical Tables. Dover Publica-
tions, 1965.

[3] Per Bothner. The Kawa Scheme system (http://www.gnu.org/software/
kawa).

[4] William Clinger. Nondeterministic call by need is neither lazy nor by name.
In Proc ACM Symp Lisp and Functional Programming, pages 226–234, 1982.

[5] R Kent Dybvig. The Scheme Programming Language (http://www.scheme.
com/tspl2d). Prentice Hall PTR, 2nd edition, 1996.

[6] Marc Feeley. Gambit Scheme System (http://www.iro.umontreal.ca/
~gambit).

[7] Matthias Felleisen. Transliterating Prolog into Scheme. Technical Report 182,
Indiana U Comp Sci Dept, 1985.

[8] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram Kr-
ishnamurthi. How to Design Programs: An Introduction to Programming and
Computing (http://www.htdp.org). MIT Press, 2001.

[9] Matthew Flatt. MzScheme (http://www.cs.rice.edu/CS/PLT/packages/
mzscheme).

[10] Daniel P Friedman and Matthias Felleisen. The Little Schemer. MIT Press,
4th edition, 1996.

[11] Daniel P Friedman and Matthias Felleisen. The Seasoned Schemer. MIT Press,
1996.

[12] Daniel P Friedman, Mitchell Wand, and Christopher T Haynes. Essentials of
Programming Languages. MIT Press, McGraw-Hill, 1992.

[13] FSF. Guile: Project GNU’s Extension Language (http://www.gnu.org/
software/guile/guile.html).

[14] Erick Gallesio. STk (http://kaolin.unice.fr/STk/STk.html).

[15] Ben Goetter. Pocket Scheme for the H/PC and P/PC (http://www.
angrygraycat.com/scheme/pscheme.htm).

[16] Christopher T Haynes. Logic continuations. In J Logic Program, pages 157–176,
1987. vol 4.

98

[17] Christopher T Haynes and Daniel P Friedman. Engines Build Process Abstrac-
tions. In Conf ACM Symp Lisp and Functional Programming, pages 18–24,
1984.

[18] Christopher T Haynes, Daniel P Friedman, and Mitchell Wand. Continuations
and Coroutines. In Conf ACM Symp Lisp and Functional Programming, pages
293–298, 1984.

[19] J A H Hunter. Mathematical Brain-Teasers. Dover Publications, 1976.

[20] Aubrey Jaffer. SCM (http://swissnet.ai.mit.edu/~jaffer/SCM.html).

[21] Sonya E Keene. Object-oriented Programming in Common Lisp: A Program-
mer’s Guide to CLOS. Addison-Wesley, 1989.

[22] Richard Kelsey, William Clinger, and Jonathan Rees (eds). Revisedˆ5 Report
on the Algorithmic Language Scheme (“R5RS”) (http://www.schemers.org/
Documents/Standards/R5RS/HTML/r5rs.html), 1998.

[23] Gregor Kiczales, Jim des Rivières, and Daniel G Bobrow. The Art of the
Metaobject Protocol. MIT Press, 1991.

[24] John McCarthy. A Basis for a Mathematical Theory of Computation. In P Braf-
fort and D Hirschberg, editors, Computer Programming and Formal Systems.
North-Holland, 1967.

[25] MIT Scheme Team. MIT Scheme (http://www.swiss.ai.mit.edu/
projects/scheme).

[26] NCSA. The Common Gateway Interface (http://hoohoo.ncsa.uiuc.edu/
cgi).

[27] Christian Queinnec. Lisp in Small Pieces. Cambridge University Press, 1996.

[28] Thomas L Saaty and Paul C Kainen. The Four-Color Problem: Assaults and
Conquest. Dover Publications, 1986.

[29] Manuel Serrano. Bigloo (http://kaolin.unice.fr/bigloo/bigloo.html).

[30] Leon Sterling and Ehud Shapiro. The Art of Prolog. MIT Press, 2nd edition,
1994.

[31] Ramin Zabih, David McAllester, and David Chapman. Non-deterministic Lisp
with dependency-directed backtracking. In AAAI-87, pages 59–64, 1987.

99

Appendix F

Index

’ (quote), 9
*, 8
+, 8
, (comma), 33
,@ (comma-splice), 33
-, 8
/, 8
<, 8
<=, 8
=, 8
>, 8
>=, 8
‘ (backquote), 33

abs, 8
alist, 40
amb, 57
and, 20
apply, 17
association list, see alist
assv, 40
atan, 8

#b (binary number), 8
begin, 5, 17

implicit, 18, 20
Bigloo, 85
boolean, 7
boolean?, 7

c...r, 12
call-with-current-continuation, see call/cc
call-with-input-file, 30
call-with-output-file, 30
call/cc, 51

and coroutine, 54
and engine, 65

car, 11
case, 20
cdr, 11
char->integer, 14
char-ci<=?, 9
char-ci<?, 9
char-ci=?, 9

100

char-ci>=?, 9
char-ci>?, 9
char-downcase, 9
char-upcase, 9
char<=?, 9
char<?, 9
char=?, 9
char>=?, 9
char>?, 9
char?, 9
character, 8

#\ notation for, 9
class, 44
clock, 65

Guile, 95
close-input-port, 30
close-output-port, 30
command line, 5
comment, 5
complex?, 7
cond, 20
conditional, 19
cons, 11
console, 5
continuation, 51
coroutine, 54
current-input-port, 29
current-output-port, 29

#d (decimal number), 8
data type, 7

compound, 10
conversion to and fro, 14
simple, 7

define, 10
define-macro, 32

in various dialects, 85
defstruct, 37
delete-duplicates, 47
delete-file, 42
dialects of Scheme, 84
display, 5, 29
dotted pair, 11

empty list, 13
engine, 65

flat, 66
nestable, 67

eof-object?, 29
eqv?, 8
evaluation, 5
even?, 26
exit, 6
exp, 8
expt, 8

101

#f, 7
falsity, 7
file

checking existence of, 42
deleting, 42
loading, 31
port for, 29
time of last modification of, 42

file-exists?, 42
file-or-directory-modify-seconds, 42, 84
fixnum, 4
fluid-let, 24

macro for, 35
for-each, 28
form, 5

Gambit, 85
gensym, 35
get-output-string, 31
getenv, 43
Guile, 84

clock, 95

identifier, 9
if, 19
inheritance

multiple, 49
single, 44

init file, 84
instance, see object
integer->char, 14
integer?, 7
iteration, 27

Kawa, 85

lambda, 16
let, 23

named, 27
let*, 23
letrec, 26
list, 11
list (procedure), 13
list->string, 14
list->vector, 14
list-position, 28
list-ref, 13
list-tail, 13
list?, 13
listener, 5
load, 5, 31
load-relative, 31

in various dialects, 85
logic programming, 57
loop, 27

macro, 32

102

avoiding variable capture inside, 34
make-string, 11
make-vector, 11
map, 28
max, 8
metaclass, 48
method, see object
min, 8
MIT Scheme, 85
multiple inheritance, 49
MzScheme, 5, 84

named let, 27
newline, 5, 29
nondeterminism, 57
not, 7
null?, 13
number, 7
number->string, 14
number?, 7
numerical integration, 89

#o (octal number), 8
object, 44
object-oriented programming, 44
odd?, 26
open-input-file, 30
open-input-string, 31
open-output-file, 30
open-output-string, 31
or, 20

pair?, 13
Pocket Scheme, 85
port, 14, 29

for file, 29
for string, 30

procedure, 14, 16
parameters, 17
recursive, 26
tail-recursive, 27

puzzles, 60

quote, 9

R5RS, 4, 84
rational?, 7
read, 29
read-char, 29
read-eval-print loop, 5
read-line, 29
real?, 7
recursion, 26

iteration as, 27
letrec, 26
tail, 27

103

reverse!, 28

S-expression, 15
SCM, 84
script, 70, 85

CGI, 74
DOS, 87

self-evaluation, 9
set!, 10
set-car!, 12
set-cdr!, 12
Simpson’s rule, 89
slot, see object
sqrt, 8
standard input, 29
standard output, 5, 29
STk, 84
string, 10

port for, 30
string (procedure), 10
string->list, 14
string->number, 14
string-append, 11
string-ref, 11
string-set!, 11
string?, 11
structure, 37

defstruct, 37
subclass, 44
subform, 5
superclass, 44
symbol, 9

case-insensitivity, 10
generated, 35

symbol?, 10
system, 42

#t, 7
table, 40
tail call, 27

elimination of, 27
tail recursion, 27
truth, 7

unless, 19
macro for, 33

variable, 9
global, 10, 22
lexical, 22
local, 22

vector, 11
vector (procedure), 11
vector->list, 14

when, 19

104

macro for, 32
write, 29
write-char, 29

#x (hexadecimal number), 8

zen, 4

105

